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Short Summary

Why forecasting seasonal epidemics?

Seasonal epidemics
m pose high burden on public health

m vary from year to year
= Forecast to allocate health ressources
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Short Summary

Why forecasting seasonal epidemics? | Algorithms for forecasting

Seasonal epidemics = Physical models (e.g. ODE with SIR)
m pose high burden on public health m Time series models, e.g. SARIMA

m vary from year to year = NOVELTY HERE: Gaussian
processes

= Forecast to allocate health ressources

Our contribution Use cases

m Precise point forecasts m Retrospective forecasts on Center
) ) o for Disease Control and Prevention
= Reliable uncertainty quantification (CDC) influenza-like illness (ILI) data

= Competetive results to state of the m CDC hosts a yearly challenge on ILI
art benchmarks forecasting
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Introduction

Seasonal Influenza

Seasonal influenza causes a tremendous burden on public health each year.

In the US alone
m 9.2 - 35.6 million cases
m 140 - 710.000 hospitalizations
= 12000 - 56.000 deaths

| Christoph Zimmer | 2020-06-15 (G)] BOSCH
ST e "



Why do we need forecasting?

The Center for Disease Control and Prevention (CDC) in the US tracks
Influenza-like illness.
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Why do we need forecasting?

The Center for Disease Control and Prevention (CDC) in the US tracks
Influenza-like illness.

Size and timing of influenza-like illness epidemics very different from year to year.
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Why do we need forecasting?

The Center for Disease Control and Prevention (CDC) in the US tracks
Influenza-like illness.
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Need for forecasting to allocate public health resources.
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Motivation -- data seen so far, how is it going to continue?

4 47 50 1 4 7 10 13 16 19
Epidemic Week
| Christoph Zimmer | 2020-06-15 @ BOSCH



Motivation -- like this?

4 47 50 1 4 7 10 13 16 19
Epidemic Week
| Christoph Zimmer | 2020-06-15 @ BOSCH



Motivation -- or this?

4 47 50 1 4 7 10 13 16 19
Epidemic Week
| Christoph Zimmer | 2020-06-15 @ BOSCH



Motivation -- or like this?

4 47 50 1 4 7 10 13 16 19
Epidemic Week
| Christoph Zimmer | 2020-06-15 @ BOSCH



Algorithm -- Intuition

We have seen previous years, so we can use machine learning.

Algorithm -- Intuition

Let us assume that we are in week 5 of year 2015

Let us assume we want to predict week 8 of year 2015.

We look how past seasons weeks 1-5 have impacted week 8

Therefore, input training data is weeks 1-5 of 2010, 1-5 of 2011, 1-5 of 2012,...
Output training data is week 8 of those years

We want to evaluate the model at week 1-5 of 2015 and predict week 8 of 2015.
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Algorithm -- more formally

Seasonal epidemics forecasting framework

Input: current week j*, current year i*, forecasting horizon T, one or more feature set

of past weeks Ji, ... ,Jy and seasons /, data recorded so far dj’ forj <j*andi < i*.
FOR t - 1 tO T % 1 week to T week forecasts
FOR/=1to N % ensembles

1. Assemble target T specific training data inputs: X = (di|j € J; , i € /)

2. and training data outputs Vi = (yi . |i € /)

3. Train a GP based on {X/, )/}

4. Forecast target according p (y’;J* X", &L y;) resulting in 1 and o
ENDFOR

Build ensemble forecast over N members
ENDFOR
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How can we test whether our framework produces accurate and
reliable forecasts?

Retrospective Testing

m We use the seasons 2003/04 - 2007/08 as training data
m We use the seasons 2010/11 and 2011/12 as validation (for feature selection)
m We use the seasons 2012/13 - 2018/19 as test data
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How can we test whether our framework produces accurate and
reliable forecasts?

Retrospective Testing

m We use the seasons 2003/04 - 2007/08 as training data

m We use the seasons 2010/11 and 2011/12 as validation (for feature selection)
m We use the seasons 2012/13 - 2018/19 as test data

m We do retrospective forecasting for each week and target of the test seasons

m Retrospective forecasting means that we do only use data that has been
available until the timepoint of forecast

m Targets are 1-4 week forecasts
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Retrospective forecasting -- Prediction intervals
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Our framework for influenza forecasting in action
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Fraction of true values within the 95%
prediction intervals (black line).

This is a binomially distributed random
number,

we can add its 95% confidence intervals
(green shaded area)

= Our framework yields reliable uncer-
tainty estimation.
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Retrospective Forecasting -- Reliability of uncertainty quantification
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Benchmarking our framework against state of the art

How to compare probabilistic forecasts?

We use a log-score: logarithm of probability in certain interval around true value.
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Benchmarking our framework against state of the art

How to compare probabilistic forecasts?

We use a log-score: logarithm of probability in certain interval around true value.

State of the Art Benchmarks

m (A) Historical averages.

m (B) MSS is a recently published framework based on a humidity based SIRS
model and a linear noise approximation (Zimmer et al., 2018, SMMR).

m (C) Linear regression uses linear models with different sets of past weeks as
features. LinEns is a average ensemble over the three best linear models.

m (D) Sarima uses Seasonal auto regressive integrated moving average models
as are also used in (Ray et al., 2017, Stat. Med.).

m (E) Epideep is a recently developed deep learning based influenza forecasting
framework (Adhikari et al., 2019, KDD).
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State of the art benchmarking: results
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State of the art benchmarking: results
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results

State of the art benchmarking
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Applications / use cases

Center for Disease Control and Prevention (CDC)

m CDC hosts a yearly influenza-like illness forecasting challenge

m Retrospective forecasts of this paper were using same data and forecasting
targets
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Applications / use cases

Center for Disease Control and Prevention (CDC)

m CDC hosts a yearly influenza-like illness forecasting challenge

m Retrospective forecasts of this paper were using same data and forecasting
targets

Join influenza-like iliness forecasting

You also have a good algorithm? Come, join the challenge, get a benchmark for
your algorithm and help CDC’s efforts responding to seasonal epidemics!

® predict.cdc.gov/
= www.cdc.gov/flu/weekly/flusight/index.html
= www.cdc.gov/coronavirus/2019-ncov/covid-data/mathematical-modeling.html
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Applications / use cases

Center for Disease Control and Prevention (CDC)

m CDC hosts a yearly influenza-like illness forecasting challenge

m Retrospective forecasts of this paper were using same data and forecasting
targets

Join influenza-like iliness forecasting

You also have a good algorithm? Come, join the challenge, get a benchmark for
your algorithm and help CDC’s efforts responding to seasonal epidemics!

® predict.cdc.gov/

= www.cdc.gov/flu/weekly/flusight/index.html

= www.cdc.gov/coronavirus/2019-ncov/covid-data/mathematical-modeling.html

Question/Comments? — christoph.zimmer@de.bosch.com
Thank you for your attention!
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