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GANSs can generate highly realistic synthetic (“fake”) images

@ Can augment training data, with new & realistic samples
@ Useful in settings with limited training data

However, training the GAN itself is challenging with limited data

@ Training GANs with limited data may yield overfitting or
training/mode collapse

Propose to transfer additional information to facilitate GAN
training with limited data

@ Leverage valuable generalizable knowledge within GANs
trained on different larae-scale datasets
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Key observations associated with generalizable knowledge:
@ For classification models pretrained on large-scale datasets
o lower-level filters (those close to the observation x) are fairly
general/transferable (Gabor-like)
e higher-level filters are more task-specific
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@ For pretrained GAN generators
o lower-level layers portray generally-applicable local patterns
o higher-level layers represent more specific semantic objects
or object parts
@ It's data-demanding to train well-behaved low-level filters
e transfer often delivers better efficiency and performance
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Our Contributions

To better transfer common knowledge for generators, for design
of generators based on limited data

@ From GANs pretrained on large-scale source datasets
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(a) GP-GAN = (b) GPHead x (c) SmallHead gc (d) Our p2
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Notation

@ Within a GAN, there is a generator (actor) and a
discriminator (critic)

@ “General-Part” of either the generator or discriminator is
composed of those model layers that are generally
applicable across a wide range of images

@ “Specific-Part” of generator or discriminator composed of
layers that are specifically associated with a class of images

@ Seek to transfer General-Part from GANs learned in
data-rich settings, to those for which there are limited data

@ The General-Part tends to be at and near layers that touch
the input (discriminator) or output (generator) image
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1. On Specifying the General-Part for Transfer
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(a) GP-GAN & (b) GPHead &

Source model: the GP-GAN' pretrained on ImageNet
Target dataset: the perceptually-distinct CelebA

1 Which training methods for GANs do actually converge? ICML 2018.



Our Method
[e]e]e] Jeele]

1. On Specifying the General-Part for Transfer
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2. On Tailoring the High-Level Specific-Part
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Even with the G4D2 general-part,
mode collapse may still happen
on small data (Flowers 8,189).

SmallHead

Style blocks deliver
@ disentangled high-level attributes > efficient exploration of

underlying data manifold > better generative quality
@ style mixing @ cheaper computation
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3. On Better Adaption of the Transferred General-Part
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We introduce the adaptive filter modulation (AdaFM) to
@ better adapt the transferred general-part to target domains
@ relax the requirements for the general-part
Given a Conv filter W € RCoutxCinxKi1xK2  AdaFM uses learnable
~ € RCuxCin gnd B € RCuxCn to modulate its statistics

WAdaFM — ’Yi,jwi’j’:’: + ﬁi,j (1)

BYIBN
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3. On Better Adaption of the Transferred General-Part

The underlying assumption is
@ basic shape/pattern within W, ;.. = generally applicable
@ statistics/correlation among i-,j-channels = target-specific
@ empirically verified in the experiments

W, 0.9 0.1 0.1 W 0.1 0.9 0.1
Source Target

@ Source and target filters share the same basic
shape/pattern but with different among-channel correlations.

@ AdaFM learns ~, . = [1/9,9, 1] to adapt source W; . . . to
target W;29°",
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Exploit GANs to transfer knowledge for limited-data generation.
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TransferGAN: Transferring GANs: generating images from limited data. ECCV 2018.

BSA: Image generation from small datasets via batch statistics adaptation. ICCV 2019.

MineGAN: MineGAN: effective knowledge transfer from GANs to target domains with few images. CVPR 2020.
FreezeD: Freeze discriminator: A simple baseline for fine-tuning GANs. arXiv 2020.



Experiments
®0000000

Table of Contents

@ Experiments



Experiments
0O@000000

Experiments

Comparisons with existing/naive methods on
1. moderate or small datasets
2. limited datasets with 1,000 images
3. extremely limited datasets with 25 images

Analysis of the proposed techniques
1. ablation study of our method
2. modulations from AdaFM
3. style augmentation/mixing with the tailored specific-part
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Comparisons with Existing/Naive Methods

1. On moderate or small datasets

CelebA | ——CelebA

CelebA
Flowers +—Flowers
o ©-Cars ——
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Cars
Cathedral | ——Cathedral

CelebA (202,599), Flowers (8,189), Cars (8,144), Cathedral (7,350)

Flowers

Cathedral

Hterations

Figure 8. FID scores (left) and generated images (right) of Scratch and Our method on 4 target datasets. The transferred general-part
dramatically accelerates the training, leading to better performance.

Table 2. FID scores of the compared methods after 60,000 training

iterations. Lower is better. “Failed” means training/mode collapse.
Method\Target CelebA Flowers Cars Cathedral
TransferGAN 18.69 failed  failed failed
Scratch 16.51 29.65  11.77 30.59
Our 9.90 16.76  10.10 15.78

@ TransferGAN vs Scratch/Our: tailored specific-part > overfitting
@ Scratch vs Our: (i) the transferred general-part, (i7) AdaFM
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Comparisons with Existing/Naive Methods

2. On limited datasets with 1,000 images
Random selection > CelebA-1K, Flowers-1K, and Cathedral-1K
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Figure 10. FID scores on CelebA-1K (left), Flower-1K (center), and Cathedral-1K (right). The best FID achieved is marked with a star.

Table 3. The best FID achieved within 60,000 training iterations on
the limited-1K datasets. Lower is better.
Method\Target CelebA-1K  Flowers-1K  Cathedral-1K

Scratch 20.75 58.18 39.97
Our-G4D2 14.19 46.68 38.17
Our-G4D3 13.99

Our-G4D5 19.77 43.05 35.88
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Comparisons with Existing/Naive Methods

3. On extremely limited datasets with 25 images
Random selection s> Flowers-25 and FFHQ-25, foIIowing BSA.?2
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Our: G4D6 general-part, GP on both real and fake samples
@ More realistic generation
@ Smooth interpolations on the learned data manifold

2Image generation from small datasets via batch statistics adaptation. ICCV12019.
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Analysis of the Proposed Techniques

1. Ablation Study of Our Method
@ GP-GAN: no filters are transferred; baseline for GPHead
@ GPHead: GP-GAN architecture + transferred general-part
@ SmallHead: transferred general-part + tailored specific-part
@ Our: SmallHead + the proposed AdaFM

. @)GP-GAN (c)SmallHead| (d)our

(b)GPHead 504 ¢ Flowers | ——Flowers | Typle |. FID scores from ablation studies on our
(c)SmallHead Cars Cars . ) A .
- «+ (d)our o® 1. ¢l Cathedral|——Cethedral| method after 60,000 training iterations. Lower is better.
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Figure 9. FID scores from the ablation studies of our method on CelebA (left)

X (d)Our 9.90 16.76  10.10 15.78
and the 3 small datasets of Flower, Cars, and Cathedral (right).
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Analysis of the Proposed Techniques

2. Modulations from AdaFM
Boxplots of the learned scale ~ and shift 3 on target datasets
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@ All filters are used in target domains but with modulations
@ Different target datasets prefer different modulations
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Analysis of the Proposed Techniques

3. Style Mixing/Augmentation with the Tailored Specific-Part

Source

Style mixing is extremely appealing for limited-data applications

@ Vast novel generation via style/attribute combinations
@ Diverse synthetic augmentation
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Conclusions

@ For lifelong learning, important to appropriately transfer
knowledge from the past to new tasks

@ Such transfer critical for performing model learning with
limited data

@ Have developed a novel means of performing lifelong
learning with GAN models

@ Allows generation of realistic synthetic data based on
limited training data

@ By style augmentation, allows significant expansion of
training data, generating new and realistic data for training
other models (e.g., supervised models)
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