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Overview: Adaptive AMTRL (Adversarial Multi-task Representation Learning)
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Adversarial Multi-task Representation Learning

Adversarial Multi-task Representation Learning (AMTRL) has achieved success in various

applications, ranging from sentiment analysis to question answering systems.
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Adaptive AMTRL

Adversarial AMTRL aims to minimize the task-averaged empirical risk and enforce the

representation of each task to share an identical distribution. We formulate it as a
constraint optimization problem

mhin Ls(h)

st. L _c=0,
and propose to solve the problem with an augmented Lagrangian method.
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A and 1 updates in the training process.




Relatedness for AMTRL
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Adaptive AMTRL

In multi-task learning, tasks regularize each other and improve the generalization of
some tasks. The weights of each task influences the effect of the regularization. This
paper proposes a weighting strategy for AMTRL based on the proposed task

relatedness.
1

T 1RY

1R,
where 1 is a 1XT vector of all 1, and R is the relatedness matrix.

Combining the augmented Lagrangian method with the weighting strategy, optimization
objective of our adaptive AMTRL method is
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PAC Bound and Analysis

Assume the representation of each task share an identical distribution, we have the
following generalization error bound.
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* The generalization error bound for AMTRL is tighter than that for MTRL.
* The number of tasks slightly influence the generalization bound of AMTRL.




Experiments - Relatedness Evolution

Sentiment Analysis and Topic Classification.
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Experiments - Classification Accuracy

Sentiment Analysis and Topic Classification.

Electronics

Software

Magazines Kitchen

Baby Apparel

Video Camera

—— Single task

—— Uniform

Health —— MGDA

Music —— AMTRL
—— AAMTRL

Sentiment Analysis.

Rec

—— Single task
—— Uniform
—— MGDA
—— AMTRL
TALK —— AAMTRL

Topic Classification




Experiments - Influence of the Number of Tasks

Sentiment Analysis.
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