

When Explanations Lie:

Why Many Modified BP Attributions Fail

Leon Sixt, Maximilian Granz, Tim Landgraf

Attribution Method: $LRP_{\alpha 1\beta 0}$

Saliency map indicates 'important' areas

Attribution Method: $LRP_{\alpha 1\beta 0}$

Does the saliency map indicate 'important' areas?

Sanity Check (Adebayo et al., 2018)

- Reset network parameter to initialization
- Saliency maps should change!
- Many modified BP methods fail:
 - PatternAttribution (Kindermans et al, 2017)
 - Deep Taylor Decomposition (Montavon et al., 2017)
 - \circ LRP- $\alpha\beta$ (Bach et al., 2015)
 - RectGrad (Kim et al., 2019)
 - Deconv (Zeiler & Fergus, 2014)
 - ExcitationBP (Zhang et al., 2018)
 - O GuidedBP* (Springenberg et al., 2014)

VGG-16

Short summary

Main Finding:

- Many modified BP methods ignore deeper layers!
- Important to know if you can trust the explanations!

In the talk:

- Intuition: Why later layers are ignored?
- Can we measure this behaviour?

z⁺-Rule

Backpropagates a custom relevance score.

Used by:

- Deep Taylor Decomposition
- LRP-α1β0
- ExcitationBP (equivalent to LRP-α1β0)

Next Steps:

- How does the z⁺-rule work for a layer?
- 2. What happens for multiple layers?

z⁺-Rule: A single layer

 $\frac{\text{positive weight} \times \text{activation}}{\text{normalization}}$

z⁺-Rule: A single layer

 $\frac{\text{positive weight} \times \text{activation}}{\text{normalization}}$

z⁺-Rule: A single layer

 $\frac{\text{positive weight} \times \text{activation}}{\text{normalization}}$

z⁺-Rule: Matrix

 $\frac{\text{weight} \times \text{activation}}{\text{normalization}}$

Weight strength Activation at layer I $Z_{l}^{+^{T}} = \left(\frac{[\dot{w}_{ij} \mathbf{h}_{l_{[j]}}]^{+}}{\sum_{k} [w_{ik} \mathbf{h}_{l_{[k]}}]^{+}}\right)_{[i,i]}$ Normalize! The sum of relevance should remains equal

z⁺-Rule: Matrix Chain

Per Layer, we obtain a $\,Z_l^+\,$ matrix

The matrix chain can be multiplied from left to right!

1st Layer

$$Z^+ = \left(\mathbf{a}_1 \, \mathbf{a}_2\right) = \left(/ \right)$$

2nd Layer

3rd Layer

4th Layer

5th Layer

6th Layer

- Output space shrink enormously!
- The saliency map is determined by early layers!

(see our paper for a rigorous proof)

LRP-αβ

- What happens if we add a few negative values?
- Weight positive α and negative β weights differently:

$$\left(\alpha Z_l^+ - \beta Z_l^-\right)$$

- Restriction on α , β : $\alpha \geq 1$ and $\alpha \beta = 1$
- Most common α =1, β =0 and α =2, β =1

More Attribution Methods

See our paper for more methods:

- RectGrad, GuidedBP, Deconv
- LRP-z (non-converging, corresponds to grad x input)
- PatternAttribution: also ignores the network prediction
- DeepLIFT: takes later layers into account

Cosine Similarity Convergence

Method to measure convergence

Sample two random vectors:

$$\boldsymbol{v}_1, \boldsymbol{v}_2 \sim \mathcal{N}(0, I)$$

- 2. Backpropagate random relevance vectors
- 3. Per layer, measure how well they align.

Backpropage Relevance

CSC: VGG-16

Median over many images and random vectors

GuidedBP

(c) VGG-16 (logarithmic)

CSC: ResNet-50

-5− LRP α5β4 -**2−** LRP-z

▼ Gradient

DeepLIFT Rev.C.
DeepLIFT Resc.
DeepLIFT Abla.

CSC: Small CIFAR-10 Network

Summary Attribution Methods

Insensitive to deeper layers

- PatternAttribution
- Deep Taylor Decomposition
- LRP-αβ
- ExcitationBP
- RectGrad
- Deconv
- GuidedBP

Sensitive to deeper layers

- DeepLIFT (Shrikumar et al., 2017)
- Gradient
- LRP-z
- Occlusion
- TCAV (Kim et al., 2017)
- Integrated Gradients, SmoothGrad
- IBA (Schulz et al., 2020)

Outlook to the paper

- More modified BP methods:
 - RectGrad, GuidedBP, Deconv
 - o LRP-z
 - PatternAttribution: also ignores the network prediction
 - DeepLIFT: does not converge
- We discuss ways to improve class sensitivity
 - LRP-Composite (Kohlbrenner et al., 2019)
 - O Contrastive LRP (Gu et al., 2018)
 - O Contrastive Excitation BP (Zhang et al., 2018)
 - Do not resolve the convergence problem

Take away points

- Many modified BP methods ignore important parts of the network
- Check: If the parameter change, do the saliency maps change too?

Thank you!