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Black-Box Optimization (BBO)

2" = argmin f(z) (1)

For C number of evaluation points, search for z* and return the best candidate

Z =arg min Cf(xz) (2)

z;, 1=1,...,
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BLACK-Box OPTIMIZATION: APPLICATIONS

Machine Learning;: In the real-world, everything is a Black-Box.
m Hyperparameter tuning: all the s
non-differentiable parameters of a learning Mechanical

Engineering

algorithm. Design

m Reinforcement Learning: Find the optimal

parameters of a policy my : s — a s.t. the

expected utility function is maximized
Molecular
Design
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Figure 1: CMA-ES algorithm at work (from Wikipedia)
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gradient estimation to direct the search process.
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The Black-Box Optimization Taxonomy

In Line-Search methods, the directional derivative
may be estimated by numerical methods, e.g.

n-Vf(z)~

fl@+ An) — f(x — An)

2A
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and following the parametric gradient V fy
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The Black-Box Optimization Taxonomy

EGL takes Model-Derivative-Based methods
forward:

1. Instead of learning the function and obtain
the parametric gradient. It directly fits a
global model of the gradient from the data.

2. It works with merely locally-integrable
functions.



INDIRECT GRADIENT LEARNING (IGL)

To develop EGL, let’s take a closer look at Model-Based methods with Neural-Network
parameterization.
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INDIRECT GRADIENT LEARNING (IGL)

Neural-Networks excel in fitting models to data fy ~ f

1. Given a set of samples around a candidate xy, minimize the MSE objective

6* = argm@inz llyi — fa(l'z)Hz
T

2. Approximate the gradient with the parametric gradient Vf ~ V fj
3. Take a gradient-descent step

Tpy1 = o — aV fo(xy)

4. Sample points around the new candidate and repeat.




INDIRECT GRADIENT LEARNING (IGL)

Roots in the Deep Deterministic Policy Gradient (DDPG) seminal paper (2016). Have been
applied successfully in robotics domains.
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DrAwBACKS oOF IGL

Pickle | Pickle Il

The gradient is never explicitly learned, For Neural-Networks, the parametric
nor we obtain any guarantees for the gradient V fg may be discontinuous even
accuracy of its estimation. if the objective is continuous.

To overcome these drawbacks of IGL, we wish to learn the gradient explicitly.

We cannot sample from V f(x) directly.

Solution: Learning a surrogate

Instead of learning V f(x) we learn the mean-gradient g-(x): averages over the gradient in a
volume V. (z) s.t. |2/ — z|| < e forall 2’ € V.(z).
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Recall the first order Taylor expression for differentiable functions

fle+1)=f2)+ Vf(z) - m+O(]*).
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Recall the first order Taylor expression for differentiable functions

fle+1)=f2)+ Vf(z) - m+O(]*).

Definition: The Mean-Gradient

The mean-gradient at z with ¢ > 0 averaging radius is
ge(x) = arg Helli[{n / lg-7— flz+71)+ f(z)|?dr
g n
Ve(z)

where V.(x) C R™ is a convex subset s.t. |2 — z|| < e for all 2’ € V.(x) and the integral
domain is over 7 s.t. x + 7 € V().




CHARACTERISTICS OF THE MEAN-GRADIENT

ela) =argmin [ lg-7— fla+7)+ fla)far
g n
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Benefit I: Continuity

If f(x) is continuous in V' s.t. V.(x) C V then the mean-gradient is a continuous function at
x.




CHARACTERISTICS OF THE MEAN-GRADIENT

ela) =argmin [ lg-7— fla+7)+ fla)far
g n
Ve()

Benefit I: Continuity

If f(x) is continuous in V' s.t. V.(x) C V then the mean-gradient is a continuous function at
x.

Benefit Il: Controllable Accuracy

For any differentiable function f with a continuous gradient, there is k4, > 0, so that for any
€ > 0 the mean-gradient satisfies ||g-(z) — V f(x)|| < kqe for all z € Q.




ExprLiciT GRADIENT LEARNING: EGL vs
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Figure 3: Comparing indirect gradient learning and explicit gradient learning for 4 typical functions:
(a) parabolic; (b) piecewise linear; (c) multiple local minima; (d) step function.




ExpLiciT GRADIENT LEARNING: EGL vs IGL
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Figure 4: Visualizing EGL and IGL with different € for various 2D problems from COCO test suite.

g=() :arggrelliR:}L / lg-7— f(z+7)+ f(x)|?dr

Ve(z)
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Learning the mean-gradient is done by minimizing the Monte-Carlo approximation of the
Mean-Gradient:

1. Sample set of pairs of observations Dy, = {(z;,v;) }I"; s.t. ; € Vo(x) where z, is a
candidate solution.

2. Minimize the loss function

»Cka Z Z - l‘z ge(l’i) -y + yi|2 (3)

i=1 Zj EVS(CU,,)

ga(a:):arginRI}L / g7 — f(z+ 1)+ f(z)|?dr

Ve()




ExprLiciT GRADIENT LEARNING: DESIGN

Learning the mean-gradient is done by minimizing the Monte-Carlo approximation of the
Mean-Gradient:
1. Sample set of pairs of observations Dy, = {(z;,vi) }1"; s.t. x; € Vz(xy) where xy is a
candidate solution.
2. Minimize the loss function

Ly (0 Z > lwj— ) - go(@i) —yj + vl )

i=1 IJGVE(I%)

Theorem + Corollary

Given a proper set of samples (denoted as a poised set), any Lipschitz continuous Neural
Network that optimizes Eq. (4) is a a controllably accurate model.

IV£(2) — ga(@)]| < mge
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Proposition (Bertsekas (1999), Proposition 1.2.3)

Suppose f : R™ — Ris s ¢-smooth and bounded below. Let 11 = z, — aV f(z}) and

k
@< ;L. Then ||V £ (z)| 2720 0.

We prove that EGL converges to a stationary point and to the global optimum if the problem
is convex.

Convergence of EGL

Suppose a controllable mean-gradient model g. with error constant x4, the gradient descent

q . . 5 a
iteration T = T — AkGe,, (xk) with oy, s.t. m < ar < min (é, %) guarantees:
. . &2
1. Monotonically decreasing steps s.t. f(zg11) < f(2r) — 2.255.

2. |V f(z)l 2% 0 fora proper choice of &



ExpLiciT GRADIENT LEARNING: CONVERGENT ALGORITHM

Algorithm 1: Convergent EGL
Input: g, o, 6,70 < 1,7 < 1,¢

k=0
while ¢ < £do
Build Model:

Collect data {(z;, y:) }1", x; € Ve(xx)
| Learn a local model g (zy)

Gradient Descent:
Thy1 < T — age(Ty,)
if f(2511) > f(x) — 2.255 then
Y0
€ 4 YaYe€

| ke k+1
return xy
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Figure 5: Comparing the success rate for a budget C' = 150 - 10.
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SEARCHING THE LATENT SPACE OF GENERATIVE MODELS

Image Generative Black-Box

Target
Attribute
attribute
A
Image D discrimination
loss
landmarks
L
Target
landmarks

fat(2) = MLa(G(2)) + MEIG(2)) + Ay tanh(D(G(2))



SEARCHING THE LATENT SPACE OF GENERATIVE MODELS

. | y
Male Male Male Female Female Female Female
Mature Young Mature Young Young Young Young Young
BlackWavy i edingBlack
Sideburns Attractive Goatee Pointy_Nose Heavy_Makeup Big_Lips Pointy_Nose Pointy_Nose
Chubby Pointy_Nose Double_Chin  High_Cheekbones  Narrow_Eyes Pale_Skin Narrow_Eyes  High_Cheekbones
Goatee High_Cheekbones  Heavy Makeup  High_Cheekbones  Heavy Makeup  Wearing_Lipstick Big_Nos




SEARCHING THE LATENT SPACE OF GENERATIVE MODELS

h
Female Female Male Male
Young Young Young Mature Young Mature Young Mature Young Mature
BlackReceding Blond Receding vy GrayReceding WavyBlond yBlon
Big_Lips High_Cheekbones  Pointy_Nose  High_Cheekbones Heavy_Makeup Big_Nose Eyeglasses Wearing_Hat Double_Chin Attractive Bangs High_Cheekbones
Rosy Cheeks Attractive  High_Cheekbones  Eyeglasses Rosy Cheeks Bald Attractive Big_Lips Eyeglasses Rosy Cheeks High Cheekbones  Attractive
High_Cheekbones  Big_Lips Wearing_Lipstick Chubby Attractive Pointy_Nose ~ High_Cheekbones  Narrow_Eyes Chubby  High_Cheekbones  Big_Nose Heavy_Makeup




SEARCHING THE LATENT SPACE OF GENERATIVE MODELS

Female Male Female
Young oung Young Young Young Young Young
BlondWavy BlondWavyReceding av,
Attractive Attractive Wearing_Lipstick High_Cheekbones Heavy Makeup High_Cheekbones Mustache Mustache Wearing_Lipstick Wearing_Lipstick Bushy_Eyebrows
Wearing_Lipstick ~ Narrow_Eyes  Wearing_Hat Pointy_Nose  Wearing_Lipstick  Big_Nose High_Cheekbones High_Cheekbones Heavy_Makeup Attractive Heavy_Makeup
Heavy_Makeup ~Heavy Makeup Heavy Makeup Wearing Lipstick Attractive Sideburns Double_Chin  Bushy_Eyebrows  Attractive Heavy_Makeup Attractive




SUMMARY

m EGL is a model-based and derivative based BBO method.




SUMMARY

m EGL is a model-based and derivative based BBO method.

m EGL can optimize non-convex and noisy functions.




SUMMARY

m EGL is a model-based and derivative based BBO method.

m EGL can optimize non-convex and noisy functions.

m EGL converges to a local minimum.




SUMMARY

m EGL is a model-based and derivative based BBO method.
m EGL can optimize non-convex and noisy functions.

m EGL converges to a local minimum.

EGL outperforms existing methods both in a synthetic test-suite and real-world
optimization application.




ExpLiciT GRADIENT LEARNING (EGL)

Thank you for your attention
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