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Overview



Population and Empirical Risks

@ Training Dataset: S = {21 =(X1,¥1),--+y2Zn = (x,,,y,,)} with each example
zi€EZ=XXx)Y

@ Parametric model w € Q C R for prediction
@ Loss function: f(w;z) measure performance of w on an example z
@ Population risk: F(w) = E,[f(w; z)] with best model

w* = argvrpei?2 F(w)

@ Empirical risk: Fs(w) = 13" f(w;z).

n



Excess Generalization Error

Based on the training data S, a randomized algorithm denoted by A (e.g. SGD)
outputs a model A(S) € Q ...

@ Target of analysis: excess generalization error

E[F(A(S)) — F(w")] = IE{F(A(S)) — Fs(A(S)) + Fs(A(S)) — Fs(w”)

estimation error optimization error

@ Vast literature on optimization error: (Duchi et al., 2011; Bach and Moulines, 2011;
Rakhlin et al., 2012; Shamir and Zhang, 2013; Orabona, 2014; Ying and Zhou, 2017; Lin
and Rosasco, 2017; Pillaud-Vivien et al., 2018; Bassily et al., 2018; Vaswani et al., 2019;
Miicke et al., 2019) and many others

@ Algorithmic stability for studying estimation error: (Bousquet and Elisseeff, 2002;
Elisseeff et al., 2005; Rakhlin et al., 2005; Shalev-Shwartz et al., 2010; Hardt et al., 2016;

Kuzborskij and Lampert, 2018; Charles and Papailiopoulos, 2018; Feldman and Vondrak,
2018) etc.



Uniform Stability Approach

Uniform Stablhty (Bousquet and Elisseeff, 2002; Elisseeff et al., 2005)

A randomized algorithm A is e-uniformly stable if, for any two datasets S and S’
that differ by one example, we have

supEx [F(A(S); z) — F(A(S"); 2)] < €uniform- (1)

@ For G-Lipschitz, strongly smooth f, SGD with step size 7; informally we have

-
o . . 1
Generalization < Uniform stability < - Znth.

t=1

@ These assumptions are restrictive: they are not true for g-norm loss
f(w; z) = |[y—(w, x)|9 (q €[1,2]) and hinge loss (1—y(w, x)); with w € R?.




Our Results



On-Average Model Stability

To handle the general setting, we propose a new concept of stability.
Let S={z:i=1,...,n}and S={Z :i=1,...,n}, and for each i, let
SO ={z,....,z_1,%,zi11,...,2a}.

On-Average Model Stability

We say a randomized algorithm A : Z" — Q is on-average model e-stable if

Eg sl ZHA S) - ASD)|E] < e D)

@ «-Hdlder continuous gradients (« € [0, 1])
H(‘?f(W,z)—@f(W’,z)H2 < fjw—w||g. (3)
« = 0 means that f is Lipschitz and o = 1 means strongly smoothness
@ If A is on-average model e-stable,

E[F(A(S)) = Fs(A(S))] = O +¢(EIFs(AS)) ™). (4)

e Can handle both Lipschitz functions and un-bounded gradient!



Case Study: Stochastic Gradient Descent

We study the on-average model stability e7; of wri1 from SGD ...

SGD

fort=1,2,...to T do
it < random index from {1,2,..., n}

Wi < Wy — 10 (Wy; Z;,) for some step sizes n; > 0
return wy_

On-Average Model Stability for SGD
e If Of is a-Hdolder continuous with « € [0, 1], then

2a

Ga = O( i + LTI (5 gy 2 (5 gemtpstu)) )
t=1

t=1 =1l

o Weighted sum of risks (i.e. Z;rzl n?E[Fs(w¢)]) can be estimated
using tools of analyzing optimization errors




Main Results for SGD

Our Key Message (Informal)
Generalization < On-average model stability < Weighted sum of risksJ

Recall, for uniform stability with Lipschitz and smooth f, that

-
L ) . 1
Generalization < Uniform stability < - ZntG2

t=1

Specifically, we have the following excess generalization bounds...



SGD with Smooth Functions
Let f be convex and strongly-smooth. Let wt = Z;l MW/ Zthl M.

Theorem (Minimax optimal generalization bounds)

Choosing 1, = 1/v/T and T =< n implies that

E[F(wr)] - F(w") = O(1/Va).

Theorem (Fast generalization bounds under low noise)

For low noise case F(w*) = O(1/n), we can take n, =1, T < n and get

E[F(wr)] = O(1/n).

@ We remove bounded gradient assumptions.

@ We get the first-ever fast generalization bound O(1/n) by stability analysis.



SGD with Lipschitz Functions

Let f be convex and G-Lipschitz (Not necessarily smooth! e.g. the hinge loss.)

Our on-average model stability bounds can be simplified as

G =00 /) S0E) ®

Key idea: gradient update is approximately contractive

lw —nof (w; z) —w' +n0f(w'; 2)[3 < ||w — w'[[5 + O(n®). (6)

Theorem (Generalization bounds)

3

We can take n; = T~% and T < n? and get

E[F(wr)] — F(w*) = O(n"?).

We get the first generalization bound O(1/+/n) for SGD with non-differentiable
functions based on stability analysis.



SGD with a-Holder continuous gradients
Let f be convex and have a-Hdlder continuous gradients with e € (0, 1).

Key idea: gradient update is approximately contractive

[w —ndf (w; z) —w' +ndf (' 2)[3 < |w — w'[}3 + O(y™==).
Theorem
o Ifaa>1/2, wetaken, =1/v/T, T =< n and get
E[F(wr)] — F(w*) = O(n"?).
o Ifa<1/2, we take ny = T22 o, T < nTe and get

E[F(Wr)] — F(w*) = O(n™%).

Theorem (Fast Generalization bounds)

a+2a 3

If F(w*)=0(%), we let n,=T

, T=<nTs and get E[F(w7)]=0(n""2%).

V.




SGD with Relaxed Convexity

We assume f is G-Lipschitz continuous.
Non-convex f but convex Fg
o .21 T 2 1t 2
@ stability bound: €2 < L (>, _im)” + 23, nd

@ generalization bound: if n; = 1/ﬁ and T =< n, then

E[F(wr)] - F(w") = O(1/V/n).

Non-convex f but strongly-convex Fs (n; = 1/t)
@ stability bound: €2 < -1 + L.

@ generalization bound: if T < n, then
E[F(w7)] — F(w*) = O(1/n).

@ example: least squares regression.
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