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Overview



Population and Empirical Risks

Training Dataset: S =
{
z1 = (x1, y1), . . . , zn = (xn, yn)

}
with each example

zi ∈ Z = X × Y

Parametric model w ∈ Ω ⊆ Rd for prediction

Loss function: f (w; z) measure performance of w on an example z

Population risk: F (w) = Ez [f (w; z)] with best model

w∗ = arg min
w∈Ω

F (w)

Empirical risk: FS(w) = 1
n

∑n
i=1 f (w; zi ).



Excess Generalization Error

Based on the training data S , a randomized algorithm denoted by A (e.g. SGD)
outputs a model A(S) ∈ Ω ...

Target of analysis: excess generalization error

E
[
F (A(S))− F (w∗)

]
= E

[
F (A(S))− FS(A(S))︸ ︷︷ ︸

estimation error

+FS(A(S))− FS(w∗)︸ ︷︷ ︸
optimization error

]

Vast literature on optimization error: (Duchi et al., 2011; Bach and Moulines, 2011;

Rakhlin et al., 2012; Shamir and Zhang, 2013; Orabona, 2014; Ying and Zhou, 2017; Lin

and Rosasco, 2017; Pillaud-Vivien et al., 2018; Bassily et al., 2018; Vaswani et al., 2019;

Mücke et al., 2019) and many others

Algorithmic stability for studying estimation error: (Bousquet and Elisseeff, 2002;

Elisseeff et al., 2005; Rakhlin et al., 2005; Shalev-Shwartz et al., 2010; Hardt et al., 2016;

Kuzborskij and Lampert, 2018; Charles and Papailiopoulos, 2018; Feldman and Vondrak,

2018) etc.



Uniform Stability Approach

Uniform Stability (Bousquet and Elisseeff, 2002; Elisseeff et al., 2005)

A randomized algorithm A is ε-uniformly stable if, for any two datasets S and S ′

that differ by one example, we have

sup
z

EA

[
f (A(S); z)− f (A(S ′); z)

]
≤ εuniform. (1)

For G-Lipschitz, strongly smooth f , SGD with step size ηt informally we have

Generalization ≤ Uniform stability ≤ 1

n

T∑
t=1

ηtG
2.

These assumptions are restrictive: they are not true for q-norm loss
f (w; z) = |y−〈w, x〉|q (q ∈ [1,2]) and hinge loss (1−y〈w, x〉)+ with w ∈ Rd .

Can we remove these assumptions and explain the real power of SGD?



Our Results



On-Average Model Stability
To handle the general setting, we propose a new concept of stability.
Let S = {zi : i = 1, . . . , n} and S̃ = {z̃i : i = 1, . . . , n}, and for each i , let
S (i) = {z1, . . . , zi−1, z̃i , zi+1, . . . , zn}.

On-Average Model Stability

We say a randomized algorithm A : Zn 7→ Ω is on-average model ε-stable if

ES,S̃,A

[1

n

n∑
i=1

‖A(S)− A(S (i))‖2
2

]
≤ ε2. (2)

α-Hölder continuous gradients (α ∈ [0, 1])∥∥∂f (w, z)− ∂f (w′, z)
∥∥

2
≤ ‖w −w′‖α2 . (3)

α = 0 means that f is Lipschitz and α = 1 means strongly smoothness.

If A is on-average model ε-stable,

E
[
F (A(S))− FS(A(S))

]
= O

(
ε1+α + ε

(
E[FS(A(S))]

) α
1+α

)
. (4)

Can handle both Lipschitz functions and un-bounded gradient!



Case Study: Stochastic Gradient Descent

We study the on-average model stability εT+1 of wT+1 from SGD ...

SGD

for t = 1, 2, . . . to T do
it ← random index from {1, 2, . . . , n}
wt+1 ← wt − ηt∂f (wt ; zit ) for some step sizes ηt > 0

return wT+1

On-Average Model Stability for SGD

If ∂f is α-Hölder continuous with α ∈ [0, 1], then

ε2
T+1 = O

( T∑
t=1

η
2

1−α
t +

1 + T/n

n

( T∑
t=1

η2
t

) 1−α
1+α

( T∑
t=1

η2
tE[FS(wt)]

) 2α
1+α
)

Weighted sum of risks (i.e.
∑T

t=1 η
2
tE
[
FS(wt)

]
) can be estimated

using tools of analyzing optimization errors



Main Results for SGD

Our Key Message (Informal)

Generalization ≤ On-average model stability ≤ Weighted sum of risks

Recall, for uniform stability with Lipschitz and smooth f , that

Generalization ≤ Uniform stability ≤ 1

n

T∑
t=1

ηtG
2

Specifically, we have the following excess generalization bounds...



SGD with Smooth Functions

Let f be convex and strongly-smooth. Let w̄T =
∑T

t=1 ηtwt/
∑T

t=1 ηt .

Theorem (Minimax optimal generalization bounds)

Choosing ηt = 1/
√
T and T � n implies that

E
[
F (w̄T )

]
− F (w∗) = O

(
1/
√
n
)
.

Theorem (Fast generalization bounds under low noise)

For low noise case F (w∗) = O(1/n), we can take ηt = 1,T � n and get

E[F (w̄T )] = O(1/n).

We remove bounded gradient assumptions.

We get the first-ever fast generalization bound O(1/n) by stability analysis.



SGD with Lipschitz Functions
Let f be convex and G -Lipschitz (Not necessarily smooth! e.g. the hinge loss.)

Our on-average model stability bounds can be simplified as

ε2
T+1 = O

((
1 + T/n2

) T∑
t=1

η2
t

)
. (5)

Key idea: gradient update is approximately contractive

‖w − η∂f (w; z)−w′ + η∂f (w′; z)‖2
2 ≤ ‖w −w′‖2

2 + O(η2). (6)

Theorem (Generalization bounds)

We can take ηt = T−
3
4 and T � n2 and get

E[F (w̄T )]− F (w∗) = O(n−
1
2 ).

We get the first generalization bound O(1/
√
n) for SGD with non-differentiable

functions based on stability analysis.



SGD with α-Hölder continuous gradients
Let f be convex and have α-Hölder continuous gradients with α ∈ (0, 1).

Key idea: gradient update is approximately contractive

‖w − η∂f (w; z)−w′ + η∂f (w′; z)‖2
2 ≤ ‖w −w′‖2

2 + O(η
2

1−α ).

Theorem

If α ≥ 1/2, we take ηt = 1/
√
T, T � n and get

E[F (w̄T )]− F (w∗) = O(n−
1
2 ).

If α < 1/2, we take ηt = T
3α−3

2(2−α) , T � n
2−α
1+α and get

E[F (w̄T )]− F (w∗) = O(n−
1
2 ).

Theorem (Fast Generalization bounds)

If F (w∗)=O( 1
n ), we let ηt =T

α2+2α−3
4 , T �n

2
1+α and get E[F (w̄T )]=O(n−

1+α
2 ).



SGD with Relaxed Convexity

We assume f is G -Lipschitz continuous.

Non-convex f but convex FS

stability bound: ε2 ≤ 1
n2

(∑T
t=1 ηt

)2
+ 1

n

∑t
t=1 η

2
t .

generalization bound: if ηt = 1/
√
T and T � n, then

E[F (w̄T )]− F (w∗) = O(1/
√
n).

Non-convex f but strongly-convex FS (ηt = 1/t)

stability bound: ε2 ≤ 1
nT + 1

n2 .

generalization bound: if T � n, then

E[F (w̄T )]− F (w∗) = O(1/n).

example: least squares regression.
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