
Adaptive Checkpoint Adjoint Method
for Gradient Estimation in Neural ODE

Juntang Zhuang, Nicha C. Dvornek, Xiaoxiao Li, Sekhar
Tatikonda, Xenophon Papademetris, James Duncan

Yale University

1

Background

• Neural ordinary differential equation (NODE) is a continuous-depth model,
and parameterizes the derivative of hidden states with a neural network.
(Chen et al., 2018)

NODE achieves great success in free-form reversible generative models
(Grathwohl et al., 2018), time series analysis (Rubanova et al., 2019)

• However, on benchmark tasks such as image classification, the empirical
performance of NODE is significantly inferior to state-of-the-art discrete-layer
models (Dupont et al., 2019; Gholami et al., 2019).

• We identify the problem is numerical error of gradient estimation for
continuous models, and propose a new method for accurate gradient
estimation in NODE.

2

Recap: from discrete-layer ResNet to Neural ODE

Discrete-layer ResNet Continuous-layer model

𝑦 = 𝑥 + 𝑓!(𝑥)

Chen, Tian Qi, et al. "Neural ordinary differential equations." Advances in neural information
processing systems. 2018.

We call 𝑡 “continuous depth” or “continuous time” interchangeably.

3

Forward pass of an ODE

𝑧 0 = 𝑥Input:

Output:

Loss:

4

𝐿 +𝑦, 𝑦 = 𝐿(𝑧 𝑇 , 𝑦)

Analytical form of adjoint method to determine grad w.r.t. 𝜃

(1) Solve 𝑧(𝑡) from 𝑡 = 0 to 𝑡 = 𝑇
Determine 𝜆(𝑇)

(2) Solve 𝜆(𝑡) from 𝑡 = 𝑇 to 𝑡 = 0

(3) Determine "#
"!

in an integral form

Pontryagin, L. S. Mathematical theory of optimal processes. Routledge, 1962.

𝜆 𝑇 = −
𝜕𝐿

𝜕𝑧 𝑇

Numerical implementation of the adjoint method

Chen, Tian Qi, et al. "Neural ordinary differential equations." Advances in neural information processing systems. 2018.

Analytical Form Numerical implementation

(1)Solve 𝑧(𝑇) with numerical ODE solvers.
Determine 𝜆 𝑇 = − $# % & ,(

$% &
Delete forward-time trajectory 𝑧 𝑡 , 0 <

𝑡 < 𝑇 on the fly

(2) Numerically solve the following
augmented ODE from 𝑡 = 𝑇 𝑡𝑜 𝑡 = 0
𝑑𝑧 𝑡
𝑑𝑡

= 𝑓 𝑧 𝑡 , 𝑡, 𝜃

𝑑𝜆 𝑡
𝑑𝑡 = −

𝜕𝑓
𝜕𝑧

!
𝜆(𝑡)

𝑑
𝑑𝑡
(
𝑑𝐿
𝑑𝜃
) = −𝜆 𝑡 ! 𝜕𝑓

𝜕𝜃

𝑠. 𝑡.

𝑧 𝑇 = 𝑧(𝑇)

𝜆 𝑇 = −
𝜕𝐿 𝑧 𝑇 , 𝑦
𝜕𝑧 𝑇

𝑑𝐿
𝑑𝜃

0
"#!

= 0

Solve augmented ODE in reverse-time

(1) Solve 𝑧(𝑡) from 𝑡 = 0 to 𝑡 = 𝑇
Determine 𝜆(𝑇)

(2) Solve 𝜆(𝑡) from 𝑡 = 𝑇 to 𝑡 = 0

(3) Determine "#
"!

in an integral form

5

Forward-time

Reverse-time

Forward-time trajectory 𝑧(𝑡) and reverse-time trajectory 𝑧(𝑡) might
mismatch due to numerical errors

Experiment with van der Pol equation, using ode45 solver in MATLAB

6

Forward-time trajectory 𝑧(𝑡) and reverse-time trajectory 𝑧(𝑡) might
mismatch due to numerical errors

Experiment with an ODE defined by convolution, using ode45 solver in MATLAB

Input Reverse-time reconstruction

7

Recap: Numerical ODE solvers with adaptive stepsize

𝑧)(𝑡)) Hidden state at time 𝑡)

ℎ) The stepsize in time

Ψ*!(𝑡) , 𝑧)) The numerical solution at time 𝑡) + ℎ) , starting from (𝑡) , 𝑧)). It
returns both the numerical approximation of 𝑧(𝑡) + ℎ)) and an estimate of
truncation error 𝑒̂.

8

Adaptive checkpoint adjoint (ACA) method

adjoint equations

Record 𝑧 𝑡 to
guarantee numerical

accuracy

Delete redundant
computation graph

and recollect
memory

9

Comparison of different methods

Forward-time trajectory Reverse-time trajectory

10

Comparison with naïve method (direct back-prop through ODE solver)

Forward-pass of a single numerical step:
Suppose it takes 𝑚 steps to find an acceptable stepsize ℎ+, such that the

estimated error is below tolerance 𝑒𝑟𝑟𝑜𝑟+ < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

Backward-pass of a single numerical step:

Naïve method

Take ℎ+ as a recursive function of ℎ, and 𝑧

Equivalent depth of computation graph is 𝑂(𝑚)

The deeper computation graph might cause
numerical errors in gradient estimation

(vanishing or exploding gradient)

ACA (ours)

Take ℎ+ as a constant

Equivalent depth is 𝑂(1)

The exploding and vanishing
gradient issue is alleviated

11

Comparison of different methods

𝑁-: Number of layers (or parameters) in 𝑓
𝑁.: Number of discretized time points in forward-time numerical integration
𝑁/: Number of discretized time points in reverse-time numerical integration.
Note that 𝑁/ is only meaningful for adjoint method [1]
𝑚: Average number of iterations to find an acceptable stepsize (whose
estimated error is below error tolerance)

[1] Chen, Tian Qi, et al. "Neural ordinary differential equations." Advances in neural
information processing systems. 2018.

[1]

12

Comparison of different methods

[1] Chen, Tian Qi, et al. "Neural ordinary differential equations." Advances in neural information
processing systems. 2018.

Take-home message:

(1)Compare with adjoint method, ACA guarantees the accuracy of reverse-time
trajectory.

(2)Compared with naïve method, ACA has a shallower computation graph, hence
is more robust to vanishing and exploding gradient issue.

[1]

13

Comparison of different methods

Consider a toy example whose gradient can be analytically solved

14

Experimental results

15

Supervised image classification

We directly modify a ResNet18 into its corresponding NODE counterpart
In a residual block: 𝑦 = 𝑥 + 𝑓 𝑥
In a NODE block: 𝑦 = 𝑧 𝑇 = 𝑧 0 + ∫,

& 𝑓 𝑡, 𝑧 𝑑𝑡 , 𝑧 0 = 𝑥
𝑓 is the same for two types of blocks

Performance of NODE trained with different methods
16

Supervised image classification

Comparison between ResNet18 and NODE-18 on Cifar10 and
Cifar100. We report the results of 10 runs for each model.

Code for ResNet is from: https://github.com/kuangliu/pytorch-cifar
17

https://github.com/kuangliu/pytorch-cifar

Supervised image classification

Error rate on test set of Cifar10

• We trained a NODE18 with ACA and Heun-Euler ODE solver.
• NODE-ACA generates the best overall performance

(NODE-18 outperforms ResNet-101).
• NODE is robust to ODE solvers. During test, we used different ODE solvers

without re-training, and still achieve comparable results

18

Results reported in the literature are marked with *

Time series modeling for irregularly sampled data

21

Incorporate physical knowledge into modeling

Three-body problem:

Consider three planets (simplified as ideal mass points)
interacting with each other, according to Newton’s law
of motion and Newton’s law of universal gravitation
(Newton, 1833).

Problem definition:
given observations of trajectory 𝒓𝒊 𝒕 , 𝑡 ∈ [0, 𝑇], predict
future trajectories 𝒓𝒊 𝒕 , 𝑡 ∈ [𝑇, 2𝑇], when mass 𝑚) is
unknown.

22

Incorporate physical knowledge into modeling

23

Predicted Trajectory Ground-truth

Conclusions

• We identify the numerical error with adjoint method to train NODE.

• We propose Adaptive Checkpoint Adjoint to accurately estimate the
gradient in NODE.

In experiments, we demonstrate NODE training with ACA is both fast
and accurate. To our knowledge, it’s the first time for NODE to achieve
ResNet-level accuracy on image classification.

• We provide a PyTorch package https://github.com/juntang-
zhuang/torch_ACA, which can be easily plugged into existing models,
with support for multi-GPU training and higher-order derivative.
(Reach out by email: j.zhuang@yale.edu or twitter: JuntangZhuang)

24

https://github.com/juntang-zhuang/torch_ACA
mailto:j.zhuang@yale.edu

