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Abstract

Context:

> Study of large Gram matrices of concentrated data.

Motivation:
» Gram matrices are at the core of various ML algorithms.
> RMT predicts their performances under Gaussian assumptions on the data.

> BUT Real data are unlikely close to Gaussian vectors.

Results:
> GAN data (~ Real data) fall within the class of Concentrated vectors.
> Universality result:

Only first and second order statistics of Concentrated data matter
to describe the behavior of Gram matrices.
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Notion of Concentrated Vectors

Definition (Concentrated Vectors)

Given a normed space (E, || - ||g) and g € R, a random vector Z € E is g-exponentially
concentrated if for any 1-Lipschitz! function F : E — R, there exists C,c > 0 such
that

Vt >0, P{|F(Z) — EF(Z)| > t} < Ce=(t/9)" 2D, 7 ¢ £ ()

If ¢ independent of dim(E), we denote | Z € £4(1)

Concentrated vectors enjoy:

(P1) If X ~ N(0,1,) then X € (1)
“Gaussian vectors are concentrated vectors”

(P2) If X € £4(1) and G is a Ag-Lipschitz map, then G(X) € E4(Ag)
“Concentrated vectors are stable through Lipschitz maps”

1Reminder: F : E — Fis A z-Lipschitz if V(x, y) € E2 : | F(x) — FW)lr < Ar lIx — ylle-
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Why Concentrated Vectors?

Figure: Images artificially generated using the BigGAN model [Brock et al, ICLR'19].

Real Data =~ GAN Data = F; o F;_; o - - - o F1(Gaussian)
[ ———

g

where the F;'s correspond to Fully Connected layers, Convolutional layers, Sub-sampling,
Pooling and activation functions, residual connections or Batch Normalisation.

= The F;'s are essentially Lipschitz operations.
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Why Concentrated Vectors?

> Fully Connected Layers and Convolutional Layers are affine operations:
Fi(x) = Wix + b;,

[[Wiullp
llullp
» Pooling Layers and Activation Functions: Are 1-Lipschitz operations with respect

to any p-norm (e.g., ReLU and Max-pooling).

and || Fillip = supyzo , for any p-norm.

> Residual Connections: Fj(x) = x + ]—',.(Z) 0-:-0 ]—'i(l)(x)
where the }',.(J)’s are Lipschitz operations, thus F; is a Lipschitz operation with
. . ¢ j
Lipschitz constant bounded by 1 + Hj:l ||]-'I.(J)||,,-p.

> ..
By:

(P1) If X ~N(0,1,) then X € &(1)
(P2) If X € &(1) and G is a Ag-Lipschitz map, then G(X) € E4(Ag)

‘ = GAN data are concentrated vectors by design. ‘

Remark: Still we need to control Ag.
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Control of \g with Spectral Normalization

Let o« > 0 and G be a neural network composed of N affine layers, each one of input
dimension d;_1 and output dimension d; for i € [N], with 1-Lipschitz activation
functions. Consider the following dynamics with learning rate n:

W < W — nE, with E,"j N./\/-(O7 1)
W «— W — max(0,01(W) — o4) ur (W)v (W)T.
The Lipschitz constant of G is bounded at convergence with high probability as:

N
Ag < H (€+ v o? +7)2didi71> .
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Figure: Parameters N =1, dy = d; = 100 and n = 1/dp.
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Model & Assumptions

(A1) Data matrix (distributed in k classes C1,Co, ..., Cx):

Xn
X = X1y w5 Xnyy Xng41s -5 Xngy oo s Xn—np+15- -+, Xn €RP

€€q; (1) €€q, (1) €&q, (1)

Model statistics:  pp = Ey,cc,[xi], C¢ = Exec,[xix]]
(A2) Growth rate assumptions: As p — oo,

1. p/n— c € (0,00).

2. The number of classers k is bounded.

3. For any ¢ € [K], [[pell = O(\/P)-

Gram matrix and its resolvent:

G= lXTX, Q(z)=(G+zl,) !
p

mu(z) = ~tr(Q(~z2)), UUT = — 74 Q(~2)dz

n 2mi |
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Main Result

Theorem .
Under Assumptions (A1) and (A2), we have Q(z) € Eq(p™2). Furthermore,

[E[Q(2)] - &(z)|| = 0 (1 /"’ip) where O(z) = EA(Z) + iJQ(z)JT

k
with A(z) = dlag{ 1+6 ( )} and Q(z) = diag{p] R(Z)/l,g}é 1

X -1
- 1 Cy
R(z)=| - _— )
” (k ez o) )
with §(z) = [61(2), . . .,0k(2)] is the unique fixed point of the system of equations
-1

C;
Se(z) =tr | Cy %Zl+6()+zlp for each ¢ € [K].
j=
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Main Result

Theorem .
Under Assumptions (A1) and (A2), we have Q(z) € E4(p~2). Furthermore,

[El@(2)] - @(2)]| = © <1 /"’,g)”) where O(z) = %A(z) + iJQ(z)JT

k
with A(z) = diag{ 5, (Z)} and Q(z) = diag{uﬂk(z)uﬁ}’lf:l

-1

k
y 1 C
Ry==-Y —L 4z
* k;1+5z(2)+2p

with §(z) = [61(2), .. .,0k(2)] is the unique fixed point of the system of equations
—1

k
1 C;
Se(z) =tr | Cy P g ng(z) +zl, for each ¢ € [K].
Jj=1

’ Key Observation: Only first and second order statistics matter! ‘
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Application to CNN Representations of GAN Images

Generator

Liseriminalor

Real / Fake

Lipschitz operation

Representation Network

% Concentrated Vectors
A

—
Lipschitz operation

» CNN representations correspond to the penultimate layer.

» Popular architectures considered in practice are: Resnet, VGG, Densenet.
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Application to CNN Representations of GAN Images

GAN Images

Real Images

Figure: k = 3 classes, n = 3000 images.
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Application to CNN Representations of GAN Images
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Application to CNN Representations of GAN Images
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Application to CNN Representations of GAN Images
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Performance of a linear SVM classifier
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Performance of a linear SVM classifier
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Take away messages

» Concentrated Vectors seem appropriate for realistic data modelling.
> Universality of linear classifiers regardless of the data distribution.

> RMT can anticipate the performances of standard classifiers for DL
representations of GAN images.

> Universality supports the Gaussianity assumption on the data representations as
considered in the literature, e.g., the FID metric

d*((11, €), (B Cw)) = |1t — p|)* + tr (C +Cuw— 2(ccw)%) .
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