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Motivation

Deep neural networks are extremely brittle to adversarial perturbed inputs.
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Robustness and accuracy of these networks is critical for their deployment in
safety and reliability critical applications.
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Motivation

There exists a set of robust and non-robust features in the input space [llyas et al., 2019].

Robust-features

Classifier

Non-robust features

Deep neural networks rely on non-robust features for generalization to test set.
In this work, we investigate the vulnerability of the latent-features of a network.

[llyas et al., 2019] Adversarial Examples are not Bugs, They are Features. NeurlPS 2019
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Adversarial Neural Pruning
We found that pruning the vulnerable features in a model improves adversarial
robustness as well as computational efficiency.
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Adversarial Neural Pruning

We found that pruning the vulnerable features in a model improves adversarial
robustness as well as computational efficiency.
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Related Work: Robustness and Sparsity
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Guo et al. (2019) and Ye et al. (2018) demonstrated that higher sparsity leads to

more robust model.
In contrast, Wang et al. (2018) illustrated that higher sparsity decreases robustness.
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Robustness of VGG-like network (left) and

ResNet-32 (right) with varying weight sparsity

[Guo et al., 2019]

-

Parameters ~ Natural FGSM PGD Papernot’s Trade-off
pruned images e=0.1 €=02 €e=0.3 black-box
FGSM Training
0% 92%  979%  94.0% 84.7%  0.5% 89.2% -
weight-96% 99.0% 948% 83.5% 59.0%  22% 79.6% high compression
weight-80% 992%  982% 947% 859%  0.2% 89.6% high robustness
filter - 70% 989% 94.1% 823%  60.1% 1.7% 82.5% high compression
filter - 60% 99.0% 97.8%  93.6% 83.0%  0.4% 85.7% high robustness
PGD Training
0% 9.0% 973%  95.6% 93.5% 92.5% 96.8% -
weight-94% 988%  95.6% 942%  91.9% 90.6% 95.6% high compression
weight-85% 99.0% 96.9%  953% 933% 92.0% 96.0% high robustness
filter - 65% 989% 89.8% 86.9%  823% 75.4% 87.5% high compression
filter - 40% 99.0% 949%  93.1% 90.8% 87.3% 94.1% high robustness

Robustness evaluation of pruned networks by
weight or filter pruning on MNIST dataset
[Wang et al., 2018]

However, all these works test their hypothesis with heuristic pruning techniques.

[Ye et al., 2018] Defending DNN adversarial attacks with pruning and logits augmentation. ICLR Workshop Submission, 2018
[Wang et al., 2018] Adversarial Robustness of Pruned Neural Networks. ICLR Workshop Submission, 2018.

[Guo et al., 2019] Sparse DNNs with Improved Adversarial Robustness. Neurips 2018
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Related Work: Robustness and Sparsity

Ye et al. (2019) proposed concurrent adversarial training and weight pruning to
achieve robust and sparse networks.
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ADMM Robustness with VGG-16 (left) and ResNet-32 (right)
with varying weight sparsity on CIFAR-10 [Ye et al., 2019]

However, it requires a pre-trained adversarial defense model and still does not take
into account the robustness of a latent-feature.

[Ye et al., 2019] Adversarial Robustness vs. Model Compression, or Both? ICCV 2019
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Vulnerability of a latent-feature

Inspired by the motivation, we introduce the concept of vulnerability in the deep
latent representation space.

Training
data

Feature Representation: z;,, = fi(z;) = max{W;z; + b;,0}, Vie {1,2,...,L —
0 = {Wl,. .. ,WL—labla .. -,bL—l}

X

where,

o o o o e o e e e e e e

[Al]TRICS
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Vulnerability of a l[atent-feature

Deep neural networks rely on vulnerable features for generalization to test set.

Adversarial
data X

o o o o e o e e e e e e

Adversarial examples distort the vulnerable features to cause misclassification.
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Vulnerability of a latent-feature

Vulnerability of a feature is the difference between the clean and adversarial feature.

Training data Adversarial data

X 4+ X

o o o o e o e e e e e e

Vulnerability of a feature: v(zjy. , Zik ) — K
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Vulnerability of a layer
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Vulnerability of a layer is the sum of vulnerabilities of all latent-features in that layer.

Training data

X

Vulnerability of a layer: 3, = NL ZZ
z

==

Adversarial data
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# of features in a layer

v(zik, Zik)

o o o o e o e e e e e e
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Vulnerability Suppression (VS)
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Vulnerability suppression loss (VS loss) minimizes the vulnerability of the network.

Training data

X

==

Adversarial data

~

X

R

Vulnerability of a network: V ( fo(X), fo(X)) = ——

# of layers
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Vulnerability Suppression (VS)

VS loss minimizes the overall vulnerability of the network.

Training data Adversarial data

X+X R

o o o o e o e e e e e e

\ . >4 J/

Objective: meinE(w,y)ND{ J(0,2,9) + (\°V(fe(fv),fe(i))}

classification loss vulnerability suppression loss
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Adversarial Neural Pruning (ANP)

ANP uses pruning as a defense mechanism and sets the vulnerable-features to zero.

Training data Adversarial data

X+X R

o o o o e o e e e e e e

ANP learns to prune the vulnerable features in a Bayesian framework to obtain a
robust and sparse model.
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Adversarial Neural Pruning with Vulnerability Suppression

ANP-VS suppresses the vulnerability of latent-features and learns a Bayesian

pruning mask to prune the vulnerable features.
Training data Adversarial data

X_I_X R

o o o o e o e e e e e e

)

cla331ﬁcat10n loss vulnerablhty suppression loss

minE(,).p (£ (0 © M, Z,y))

&21

Objective: minE(w,y)ND{ J (9®M L,Y) 4+ A V(fo( ); fo(

7
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Adversarial Beta-Bernoulli Dropout

ANP with Beta-Bernoulli Dropout [Lee et al., 2018] models the dropout probability
for each channel/neuron with the sparsity inducing Beta-Bernoulli distribution.

‘ Approximate posterior

Kumar(=;a,b)
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[Al]TRICS

The activated channels/neurons are modelled according to the Bernoulli distribution.

[Lee et al., 2018] Adaptive Network Sparsification via Dependent Variational Beta-Bernoulli Dropout. arXiv preprint arXiv:1805.10896
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Adversarial Beta-Bernoulli Dropout

ANP with Beta-Bernoulli Dropout [Lee et al., 2018] generates dropout mask from

sparsity inducing Beta-Bernoulli prior.
Approximate posterior
Kumar(m;a = 0.1, =1)
High -
density c s s :
0 0 Al Retain probability 7T
ni my 3 my 3 i n3 n3 n§ n’ ¢
nf n‘% n,g 71'2 ng’ Sparsity inducing prior
: Beta(m;a=0.1,8=1)
E High " I
i density A
oy L Srounsd Retain probability

Objective: mAiln{Zle Eq logp (Yn|f(Zn;0 © M)| — Dxy [q (M;7)||p(M \77)]}
ANP is general, and can be applied to any Bayesian pruning technique.

[Lee et al., 2018] Adaptive Network Sparsification via Dependent Variational Beta-Bernoulli Dropout. arXiv preprint arXiv:1805.10896
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Dataset

We evaluate our model and baselines on three benchmark datasets.

MNIST [Lecun, 1998] CIFAR10 [Krizhevsky, 2012] CIFAR100 [Krizhevsky, 2012]
A dataset with 60,000 A dataset with 60,000 A dataset with 60,000

gray scale images of images from ten animal and images from 100 generic
handwritten digits with vehicle classes. object classes.

ten classes.
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[Lecun, 1998] Lecun, Y. The MNIST database of handwritten digits.
[Krizhevsky, 2012] Krizhevsky, A. Learning multiple layer of features from tiny images. University of Toronto 2012
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Result on CIFAR-10 dataset

Our proposed ANP-VS outperforms all the baselines.

Standard 92.76 13.79 41.65 0.077 0.065 100.0 1.00 0.00

ANP-VS 88.18 56.21 71.44 0.019 0.016 12.27 241 76.53

Standard: Base convolutional network.
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Result on CIFAR-10 dataset

Our proposed ANP-VS outperforms all the baselines.

Standard 92.76 13.79 41.65 0.077 0.065 100.0 1.00 0.00
BP 92.91 14.30 42.88 0.037 0.033 12.41 2.34 75.92
ANP-VS 88.18 56.21 71.44 0.019 0.016 12.27 241 76.53

Bayesian Pruning (BP) [Lee et al., 2018]: Base network with Beta-bernoulli dropout.

[Lee et al., 2018] Adaptive Network Sparsification via Dependent Variational Beta-Bernoulli Dropout. arXiv preprint arXiv:1805.10896



KAIST [AIJTRICS

Result on CIFAR-10 dataset

Our proposed ANP-VS outperforms all the baselines.

Standard 92.76 13.79 41.65 0.077 0.065 100.0 1.00 0.00
BP 92.91 14.30 42.88 0.037 0.033 12.41 2.34 75.92
AT 87.50 49.85 63.70 0.050 0.047 100.0 1.00 0.00

ANP-VS 88.18 56.21 71.44 0.019 0.016 12.27 241 76.53

Adversarial Training (AT) [Kurakin et al., 2016, Madry et al., 2016]: Adversarial
trained network.

[Kurakin et al., 2016] Adversarial Machine Learning at Scale. ICLR 2016
[Madry et al., 2016] Towards deep learning models resistant to adversarial attacks. ICLR 2018
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Result on CIFAR-10 dataset

Our proposed ANP-VS outperforms all the baselines.

Standard 92.76 13.79 41.65 0.077 0.065 100.0 1.00 0.00
BP 92.91 14.30 42.88 0.037 0.033 12.41 2.34 75.92
AT 87.50 49.85 63.70 0.050 0.047 100.0 1.00 0.00

AT BNN 86.69 51.87 64.92 0.267 0.238 200.0 0.50 0.00

ANP-VS 88.18 56.21 71.44 0.019 0.016 12.27 241 76.53

AT BNN [Liu et al., 2019]: Adversarial Bayesian trained neural network.

[Liu et al., 2019] ADV-BNN: Improved Adversarial Defense Through Robust Bayesian Neural Network. ICLR 2019
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Result on CIFAR-10 dataset

Our proposed ANP-VS outperforms all the baselines.

Standard 92.76 13.79 41.65 0.077 0.065 100.0 1.00 0.00
BP 92.91 14.30 42.88 0.037 0.033 12.41 2.34 75.92
AT 87.50 49.85 63.70 0.050 0.047 100.0 1.00 0.00

AT BNN 86.69 51.87 64.92 0.267 0.238 200.0 0.50 0.00

Pre. AT 87.50 52.25 66.10 0.041 0.036 100.0 1.00 0.00

ANP-VS 88.18 56.21 71.44 0.019 0.016 12.27 241 76.53

Pretrained AT (Pre. AT) [Hendrycks et al., 2019]: Adversarial training on a pretrained
base model.

[Hendrycks et al., 2019] Using Pre-Training can Improve Model Robustness and Uncertainty. ICML 2019
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Result on CIFAR-10 dataset

Our proposed ANP-VS outperforms all the baselines.

[Al]TRICS

Standard 92.76 13.79 41.65 0.077 0.065 100.0 1.00 0.00
BP 92.91 14.30 42.88 0.037 0.033 12.41 2.34 75.92
AT 87.50 49.85 63.70 0.050 0.047 100.0 1.00 0.00

AT BNN 86.69 51.87 64.92 0.267 0.238 200.0 0.50 0.00

Pre. AT 87.50 52.25 66.10 0.041 0.036 100.0 1.00 0.00
ADMM 78.15 47.37 62.15 0.034 0.030 100.0 1.00 75.00
ANP-VS 88.18 56.21 71.44 0.019 0.016 12.27 241 76.53

ADMM [Ye et al., 2019]: Concurrent weight pruning and adversarial training.

[Ye et al., 2019] Adversarial Robustness vs. Model Compression, or Both? ICCV 2019
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Result on CIFAR-10 dataset

Our proposed ANP-VS outperforms all the baselines.
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Standard 92.76 13.79 41.65 0.077 0.065 100.0 1.00 0.00
BP 92.91 14.30 42.88 0.037 0.033 12.41 2.34 75.92
AT 87.50 49.85 63.70 0.050 0.047 100.0 1.00 0.00

AT BNN 86.69 51.87 64.92 0.267 0.238 200.0 0.50 0.00
Pre. AT 87.50 52.25 66.10 0.041 0.036 100.0 1.00 0.00
ADMM 78.15 47.37 62.15 0.034 0.030 100.0 1.00 75.00
TRADES 80.33 52.08 64.80 0.045 0.042 100.0 1.00 0.00

ANP-VS 88.18 56.21 71.44 0.019 0.016 12.27 241 76.53

TRADES [Zhang et al., 2019]: Explicit trade-off between natural and robust

generalization.

[Zhang et al., 2019] Theoretically Principled Trade-off between Robustness and Accuracy. ICML 2019
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Result on CIFAR-100 dataset

Our proposed ANP-VS outperforms all the baselines.

[Al]TRICS

Standard 67.44 2.81 14.94 0.143 0.119 100.0 1.00 0.00
BP 69.40 3.12 16.39 0.067 0.059 18.59 1.95 63.48
AT 57.79 19.07 32.47 0.079 0.071 100.0 1.00 0.00

AT BNN 53.75 19.40 30.38 0.446 0.385 200.0 0.50 0.00
Pre. AT 57.14 19.86 35.42 0.071 0.065 100.0 1.00 0.00
ADMM 52.52 19.65 31.30 0.060 0.056 100.0 1.00 65.00
TRADES 56.70 21.21 32.81 0.065 0.060 100.0 1.00 0.00
ANP-VS 59.15 22.35 37.01 0.035 0.030 16.74 2.02 68.80
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Results

Both our models outperforms the baselines.

AT 87.50 49.85 0.050
o ATVS 87.44 51.52 0.024
N 88.36 55.63 0.022
© ANP-VS 88.18 56.21 0.016
_ AT 57.79 19.07 0.079
i AT-VS 57.74 20.06 0.061
= AW 58.47 22.20 0.037
T awevs 593 22.35 0.035

Performance of different
components
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[Al]TRICS
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Performance with higher compression

ANP-VS outperforms the baselines even with higher sparsity of 80%.
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CIFAR-100
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Performance with higher compression

ANP-VS outperforms the baselines even with higher sparsity of 80%.

CIFAR-10

CIFAR-100

Clean Accuracy (%)

Clean Accuracy (%)
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Vulnerability of input-layer features

Bayesian pruning zeros out some of the distortions in tha latent-features.

Standard Bayesian Pruning
40 40
30 30/
20 20!
10 I 10/ I
050 0.2 0.4 06 0.0 0.2 0.4 0.6

However, it does not consider the distortion of the features while pruning.
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Vulnerability of input-layer features

Adversarial training reduces the distortion level of all features.

Standard Bayesian Pruning Adversarial Training
40 40 40
30 30 30
20 20+ 20
10 I 10 I 10
0.0 0.2 0.4 06 0.0 0.2 0.4 0.6 997 02 02 0.6

However, adversarial training does not zero out the vulnerable latent-features.
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Vulnerability of input-layer features

ANP-VS leads to reduction in latent-features distortion which results in robustness.

Standard Bayesian Pruning Adversarial Training Ours
40 40 40 40
30 30 30 30/
20 20 20 201
10 I 10 l 10/ 10 i
050 0.2 0.4 06 0.0 0.2 0.4 0.6 %7 0.2 04 06 (00 0.2 0.4 0.6

ANP-VS has the largest number of features with zero distortion, and low distortion
level in general.
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Latent-features visualization

Our proposed method leads to significant reduction in the vulnerability of
latent-features.

~ (0.059)

Visualization of the
vulnerability of the
latent-features with
respect to the input pixels
for various datasets.

Original Standard
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Loss surface visualization

Also, our proposed method achieves smoother loss surface.

Standard Bayesian Pruning Adversarial Training Ours
|

: 0.00
0.00 0.00 g 0.00 C 05
0.25 025 0.25 ~0-2> 005 —0.25 0.25

It indicates the absence of gradient obfuscation, demonstrating the effectiveness
of our method.
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Conclusion

We tackle the fundamental cause of vulnerability of deep networks by
investigating the distortion of latent-features.

e Adversarial Neural Pruning with Vulnerability Suppression loss (ANP-VS) prunes
the vulnerable features and minimizes the feature vulnerability in order to
improve adversarial robustness.

e Results show that our models minimizes the feature vulnerability, improves
robustness with negligible memory and computational requirements.

* We believe that our paper can be an essential part toward building
memory-efficient robust models.

Codes available at https://github.com/divyam3897/ANP_VS
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Thank you



