

Adversarial Neural Pruning with Latent Vulnerability Suppression

Divyam Madaan¹, Jinwoo Shin^{2,3} and Sung Ju Hwang^{1,3,4}

¹School of Computing, KAIST, Daejeon, South Korea ²School of Electrical Engineering, KAIST, Daejeon, South Korea ³Graduate School of AI, KAIST, Daejeon, South Korea ⁴AITRICS, Seoul, South Korea

Motivation

Deep neural networks are extremely brittle to adversarial perturbed inputs.

Robustness and accuracy of these networks is critical for their deployment in **safety and reliability critical applications**.

Motivation

There exists a set of *robust* and *non-robust* features in the input space [Ilyas et al., 2019].

Deep neural networks rely on **non-robust features** for generalization to test set. In this work, we investigate the vulnerability of the **latent-features of a network**.

Adversarial Neural Pruning

We found that *pruning the vulnerable features* in a model improves adversarial robustness as well as computational efficiency.

Adversarial Neural Pruning

We found that *pruning the vulnerable features* in a model improves adversarial robustness as well as computational efficiency.

Related Work: Robustness and Sparsity

Guo et al. (2019) and Ye et al. (2018) demonstrated that *higher sparsity leads to more robust model*.

In contrast, Wang et al. (2018) illustrated that higher sparsity decreases robustness.

Parameters	Natural		FGSM		PGD	Papernot's	Trade-off			
pruned	images	$\epsilon = 0.1$	$\epsilon = 0.2$	$\epsilon = 0.3$	rub	black-box				
FGSM Training										
0%	99.2%	97.9%	94.0%	84.7%	0.5%	89.2%	-			
weight - 96%	99.0%	94.8%	83.5%	59.0%	2.2%	79.6%	high compression			
weight - 80%	99.2%	98.2%	94.7%	85.9%	0.2%	89.6%	high robustness			
filter - 70%	98.9%	94.1%	82.3%	60.1%	1.7%	82.5%	high compression			
filter - 60%	99.0%	97.8%	93.6%	83.0%	0.4%	85.7%	high robustness			
			PGI	O Training						
0%	99.0%	97.3%	95.6%	93.5%	92.5%	96.8%	-			
weight - 94%	98.8%	95.6%	94.2%	91.9%	90.6%	95.6%	high compression			
weight - 85%	99.0%	96.9%	95.3%	93.3%	92.0%	96.0%	high robustness			
filter - 65%	98.9%	89.8%	86.9%	82.3%	75.4%	87.5%	high compression			
filter - 40%	99.0%	94.9%	93.1%	90.8%	87.3%	94.1%	high robustness			

Robustness of VGG-like network (left) and ResNet-32 (right) with varying weight sparsity [Guo et al., 2019]

Robustness evaluation of pruned networks by weight or filter pruning on MNIST dataset [Wang et al., 2018]

However, all these works test their hypothesis with heuristic pruning techniques.

Related Work: Robustness and Sparsity

Ye et al. (2019) proposed *concurrent adversarial training and weight pruning* to achieve robust and sparse networks.

ADMM Robustness with VGG-16 (left) and ResNet-32 (right) with varying weight sparsity on CIFAR-10 [Ye et al., 2019]

However, it requires a *pre-trained adversarial defense model* and still does not take into account the *robustness of a latent-feature*.

Vulnerability of a latent-feature

Inspired by the motivation, we introduce the concept of *vulnerability in the deep*

latent representation space.

Feature Representation: $z_{l+1}=f_l(z_l)=\max\{W_lz_l+b_l,0\},\quad orall l\in\{1,2,\dots,L-1\},$ where, $\theta=\{W_1,\dots,W_{L-1},b_1,\dots,b_{L-1}\}$

Vulnerability of a latent-feature

Deep neural networks rely on vulnerable features for generalization to test set.

Adversarial examples *distort* the *vulnerable features* to cause *misclassification*.

Vulnerability of a latent-feature

Vulnerability of a feature is the *difference* between the *clean* and *adversarial* feature.

Vulnerability of a feature: $v(z_{lk}, ilde{m{z}}_{lk}) = \mathbb{E}_{(x,y)\sim\mathcal{D}}|z_{lk} - ilde{m{z}}_{lk}|$

Vulnerability of a layer

Vulnerability of a layer is the sum of vulnerabilities of all latent-features in that layer.

Vulnerability of a layer:
$$\overline{v_l} = rac{1}{N_l} \sum_{k=1}^{k=N_l} v(z_{lk}, oldsymbol{z}_{lk})$$

of features in a layer

Vulnerability Suppression (VS)

Vulnerability suppression loss (VS loss) *minimizes* the *vulnerability of the network*.

Vulnerability of a network: $V(f_{ heta}(X),f_{ heta}(ilde{X}))=rac{1}{L-1}\sum_{l=1}^{l=L-1}\overline{v_l}$ # of layers

Vulnerability Suppression (VS)

VS loss *minimizes* the overall *vulnerability of the network*.

Adversarial Neural Pruning (ANP)

ANP uses pruning as a defense mechanism and sets the vulnerable-features to zero.

ANP learns to prune the vulnerable features in a Bayesian framework to obtain a **robust** and **sparse** model.

Adversarial Neural Pruning with Vulnerability Suppression

ANP-VS suppresses the vulnerability of latent-features and learns a Bayesian

$$\begin{array}{ll} \textit{Objective:} & \min_{\theta} \mathbb{E}_{(x,y)\sim\mathcal{D}} \Big\{ \underbrace{J(\theta\odot M,x,y)}_{\text{classification loss}} \ + \ \underbrace{\lambda\cdot V(f_{\theta}(x),f_{\theta}(\tilde{x}))}_{\text{vulnerability suppression loss}} \\ & \min_{M} \mathbb{E}_{(x,y)\sim\mathcal{D}} \left(\mathcal{L} \left(\theta\odot M,\tilde{x},y\right) \right) \end{array}$$

Adversarial Beta-Bernoulli Dropout

ANP with Beta-Bernoulli Dropout [Lee et al., 2018] models the dropout probability for each channel/neuron with the *sparsity inducing Beta-Bernoulli distribution*.

The activated channels/neurons are modelled according to the Bernoulli distribution.

Adversarial Beta-Bernoulli Dropout

ANP with Beta-Bernoulli Dropout [Lee et al., 2018] generates dropout mask from *sparsity inducing Beta-Bernoulli prior*.

Objective: $\min_{M} \left\{ \sum_{n=1}^{N} \mathbb{E}_{q} \left[\log p \left(y_{n} | f(\tilde{x}_{n}; \theta \odot M) \right] - D_{\mathrm{KL}} \left[q \left(M; \pi \right) | | p(M|\pi) \right] \right\}$ **ANP** is general, and can be applied to any **Bayesian pruning technique**.

Dataset

We evaluate our model and baselines on three benchmark datasets.

MNIST [Lecun, 1998]
A dataset with 60,000
gray scale images of
handwritten digits with
ten classes.

CIFAR10 [Krizhevsky, 2012] A dataset with 60,000 images from *ten animal and vehicle classes*.

CIFAR100 [Krizhevsky, 2012] A dataset with 60,000 images from 100 generic object classes.

Our proposed ANP-VS outperforms all the baselines.

Model	Clean acc.	Adv. (WB)	Adv. (BB)	Vul. (WB)	Vul. (BB)	Memory	xFLOPS	Sparsity
Standard	92.76	13.79	41.65	0.077	0.065	100.0	1.00	0.00
ANP-VS	88.18	56.21	71.44	0.019	0.016	12.27	2.41	76.53

Standard: Base convolutional network.

Our proposed ANP-VS outperforms all the baselines.

Model	Clean acc.	Adv. (WB)	Adv. (BB)	Vul. (WB)	Vul. (BB)	Memory	xFLOPS	Sparsity
Standard	92.76	13.79	41.65	0.077	0.065	100.0	1.00	0.00
ВР	92.91	14.30	42.88	0.037	0.033	12.41	2.34	75.92
ANP-VS	88.18	56.21	71.44	0.019	0.016	12.27	2.41	76.53

Bayesian Pruning (BP) [Lee et al., 2018]: Base network with Beta-bernoulli dropout.

Our proposed ANP-VS outperforms all the baselines.

Model	Clean acc.	Adv. (WB)	Adv. (BB)	Vul. (WB)	Vul. (BB)	Memory	xFLOPS	Sparsity
Standard	92.76	13.79	41.65	0.077	0.065	100.0	1.00	0.00
ВР	92.91	14.30	42.88	0.037	0.033	12.41	2.34	75.92
AT	87.50	49.85	63.70	0.050	0.047	100.0	1.00	0.00
ANP-VS	88.18	56.21	71.44	0.019	0.016	12.27	2.41	76.53

Adversarial Training (AT) [Kurakin et al., 2016, Madry et al., 2016]: Adversarial trained network.

Our proposed ANP-VS outperforms all the baselines.

Model	Clean acc.	Adv. (WB)	Adv. (BB)	Vul. (WB)	Vul. (BB)	Memory	xFLOPS	Sparsity
Standard	92.76	13.79	41.65	0.077	0.065	100.0	1.00	0.00
ВР	92.91	14.30	42.88	0.037	0.033	12.41	2.34	75.92
AT	87.50	49.85	63.70	0.050	0.047	100.0	1.00	0.00
AT BNN	86.69	51.87	64.92	0.267	0.238	200.0	0.50	0.00
ANP-VS	88.18	56.21	71.44	0.019	0.016	12.27	2.41	76.53

AT BNN [Liu et al., 2019]: Adversarial Bayesian trained neural network.

Our proposed ANP-VS outperforms all the baselines.

Model	Clean acc.	Adv. (WB)	Adv. (BB)	Vul. (WB)	Vul. (BB)	Memory	xFLOPS	Sparsity
Standard	92.76	13.79	41.65	0.077	0.065	100.0	1.00	0.00
ВР	92.91	14.30	42.88	0.037	0.033	12.41	2.34	75.92
AT	87.50	49.85	63.70	0.050	0.047	100.0	1.00	0.00
AT BNN	86.69	51.87	64.92	0.267	0.238	200.0	0.50	0.00
Pre. AT	87.50	52.25	66.10	0.041	0.036	100.0	1.00	0.00
ANP-VS	88.18	56.21	71.44	0.019	0.016	12.27	2.41	76.53

Pretrained AT (Pre. AT) [Hendrycks et al., 2019]: Adversarial training on a pretrained base model.

Our proposed ANP-VS outperforms all the baselines.

Model	Clean acc.	Adv. (WB)	Adv. (BB)	Vul. (WB)	Vul. (BB)	Memory	xFLOPS	Sparsity
Standard	92.76	13.79	41.65	0.077	0.065	100.0	1.00	0.00
BP	92.91	14.30	42.88	0.037	0.033	12.41	2.34	75.92
AT	87.50	49.85	63.70	0.050	0.047	100.0	1.00	0.00
AT BNN	86.69	51.87	64.92	0.267	0.238	200.0	0.50	0.00
Pre. AT	87.50	52.25	66.10	0.041	0.036	100.0	1.00	0.00
ADMM	78.15	47.37	62.15	0.034	0.030	100.0	1.00	75.00
ANP-VS	88.18	56.21	71.44	0.019	0.016	12.27	2.41	76.53

ADMM [Ye et al., 2019]: Concurrent weight pruning and adversarial training.

Our proposed ANP-VS outperforms all the baselines.

Model	Clean acc.	Adv. (WB)	Adv. (BB)	Vul. (WB)	Vul. (BB)	Memory	xFLOPS	Sparsity
Standard	92.76	13.79	41.65	0.077	0.065	100.0	1.00	0.00
ВР	92.91	14.30	42.88	0.037	0.033	12.41	2.34	75.92
AT	87.50	49.85	63.70	0.050	0.047	100.0	1.00	0.00
AT BNN	86.69	51.87	64.92	0.267	0.238	200.0	0.50	0.00
Pre. AT	87.50	52.25	66.10	0.041	0.036	100.0	1.00	0.00
ADMM	78.15	47.37	62.15	0.034	0.030	100.0	1.00	75.00
TRADES	80.33	52.08	64.80	0.045	0.042	100.0	1.00	0.00
ANP-VS	88.18	56.21	71.44	0.019	0.016	12.27	2.41	76.53

TRADES [Zhang et al., 2019]: Explicit trade-off between natural and robust generalization.

[Zhang et al., 2019] Theoretically Principled Trade-off between Robustness and Accuracy. ICML 2019

Our proposed ANP-VS outperforms all the baselines.

Model	Clean acc.	Adv. (WB)	Adv. (BB)	Vul. (WB)	Vul. (BB)	Memory	xFLOPS	Sparsity
Standard	67.44	2.81	14.94	0.143	0.119	100.0	1.00	0.00
ВР	69.40	3.12	16.39	0.067	0.059	18.59	1.95	63.48
AT	57.79	19.07	32.47	0.079	0.071	100.0	1.00	0.00
AT BNN	53.75	19.40	30.38	0.446	0.385	200.0	0.50	0.00
Pre. AT	57.14	19.86	35.42	0.071	0.065	100.0	1.00	0.00
ADMM	52.52	19.65	31.30	0.060	0.056	100.0	1.00	65.00
TRADES	56.70	21.21	32.81	0.065	0.060	100.0	1.00	0.00
ANP-VS	59.15	22.35	37.01	0.035	0.030	16.74	2.02	68.80

Results

Both our models outperforms the baselines.

	Model	Clean acc.	Adv. (WB)	Vul. (WB)
	AT	87.50	49.85	0.050
۷-10	AT-VS	87.44	51.52	0.024
CIFAR-10	ANP	88.36	55.63	0.022
ਹ	ANP-VS	88.18	56.21	0.016
0	AT	57.79	19.07	0.079
CIFAR-100	AT-VS	57.74	20.06	0.061
	ANP	58.47	22.20	0.037
J	ANP-VS	59.15	22.35	0.035

Performance of different components

Mean distortion

Performance with higher compression

ANP-VS outperforms the baselines even with *higher sparsity of 80%*.

AI TRICS

Performance with higher compression

ANP-VS outperforms the baselines even with *higher sparsity of 80%*.

Vulnerability of input-layer features

Bayesian pruning zeros out some of the distortions in tha latent-features.

However, it does not consider the *distortion of the features* while pruning.

Vulnerability of input-layer features

Adversarial training *reduces the distortion* level of all features.

However, adversarial training does not zero out the vulnerable latent-features.

Vulnerability of input-layer features

ANP-VS leads to *reduction in latent-features distortion* which results in robustness.

ANP-VS has the *largest number of features with zero distortion*, and low distortion level in general.

Latent-features visualization

Our proposed method leads to significant reduction in the *vulnerability of latent-features*.

Visualization of the vulnerability of the latent-features with respect to the input pixels for various datasets.

Loss surface visualization

Also, our proposed method achieves *smoother loss surface*.

It indicates the *absence* of *gradient obfuscation*, demonstrating the effectiveness of our method.

Conclusion

- We tackle *the fundamental cause* of *vulnerability of deep networks* by investigating the distortion of *latent-features*.
- Adversarial Neural Pruning with Vulnerability Suppression loss (ANP-VS) prunes
 the vulnerable features and minimizes the feature vulnerability in order to
 improve adversarial robustness.
- Results show that our models *minimizes the feature vulnerability, improves* robustness with negligible memory and computational requirements.
- We believe that our paper can be an essential part toward building memory-efficient robust models.

Codes available at https://github.com/divyam3897/ANP_VS

Thank you