
Inertial Block Proximal Methods for
Non-Convex Non-Smooth Optimization

L. T. K. Hien 1 N. Gillis 1 P. Patrinos 2

1University of Mons

2KU Leuven

The 37th International Conference on Machine Learning
ICML 2020

1 / 44

Overview

1 Problem set up
Motivation
Block Coordinate Descent Methods

2 The proposed methods: IBP and IBPG
Extension to Bregman divergence

3 Convergence Analysis
Subsequential convergence
Global convergence

4 Application to NMF

5 Preliminary numerical results

2 / 44

Problem set up

We consider the following non-smooth non-convex optimization problem

min
x∈E

F (x) , where F (x) := f (x) + g(x), (1)

and

x is partitioned into s blocks/groups of variables:
x = (x1, . . . , xs) ∈ E = E1 × . . .× Es with Ei , i = 1, . . . , s, being
finite dimensional real linear spaces equipped with the norm ‖·‖(i) and
the inner product 〈·, ·〉(i),

f : E→ R is a continuous but possibly non-smooth non-convex
function, and

g(x) =
∑s

i=1 gi (xi) with gi : Ei → R ∪ {+∞} for i = 1, . . . , s are
proper and lower semi-continuous functions.

3 / 44

Nonnegative matrix factorization – A motivation

NMF

Given X ∈ Rm×n
+ and the integer r < min(m,n), solve

min
U≥0,V≥0

1

2
‖X − UV ‖2

F such thatU ∈ Rm×r
+ andV ∈ Rr×n

+ .

NMF is a key problem in data analysis and machine learning with
applications in

image processing,

document classification,

hyperspectral unmixing,

audio source separation.

4 / 44

Nonnegative matrix factorization – A motivation

NMF

Given X ∈ Rm×n
+ and the integer r < min(m,n), solve

min
U≥0,V≥0

1

2
‖X − UV ‖2

F such thatU ∈ Rm×r
+ andV ∈ Rr×n

+ .

Let f (U,V) = 1
2 ‖X − UV ‖2

F ,
g1(U) = IRm×r

+
(U), and

g2(V) = IRr×n
+

(V).

NMF is rewritten as
min
U,V

f (U,V) +g1(U) +g2(V).

Let f (U:i ,Vi :) = 1
2

∥∥X − r∑
i=1

U:iVi :

∥∥2

F
,

gi (U:i) = IRm
+

(U:i), i = 1, . . . , r, and
gi+r(Vi :) = IRn

+
(Vi :), i = 1, . . . , r.

NMF is rewritten as

min
U:i ,Vi :

f (U:i ,Vi :) +
r∑

i=1
gi (U:i) +

2r∑
i=r+1

gi (Vi :).

5 / 44

Non-negative approximate canonical polyadic
decomposition (NCPD)

We consider the following NCPD problem: given a non-negative tensor
T ∈ RI1×I2×...×IN and a specified order r, solve

min
X (1),...,X (N)

f :=
1

2

∥∥∥T − X (1) ◦ . . . ◦ X (N)
∥∥∥2

F

such that X (n) ∈ RIn×r
+ , n = 1, . . . ,N,

(2)

where the Frobenius norm of a tensor T ∈ RI1×I2×...×IN is defined as
‖T‖F =

√∑
i1,...,iN

T 2
i1i2...iN

, and the tensor product X = X (1) ◦ . . . ◦ X (N)

is defined as Xi1i2...iN =
∑r

j=1 X
(1)
i1j

X
(2)
i2j

. . .X
(N)
iN j

, for in ∈ {1, . . . , In},
n = 1, . . . ,N. Here X

(n)
ij is the (i , j)-th element of X (n). Let

gi (X
(i)) = IRIi×r

+
(X (i)). NCPD is rewritten as

min
X (1),...,X (N)

f (X (1), . . . ,X (N)) +
N∑
i=1

gi (X
(i)).

6 / 44

Block Coordinate Descent Methods

1: Initialize: Choosing initial point x (0) and other parameters.
2: for k = 1, . . . do
3: for i = 1, . . . , s do
4: Fix the latest values of the blocks j 6= i :(

x
(k)
1 , . . . , x

(k)
i−1, xi , x

(k−1)
i+1 , . . . , x

(k−1)
s

)
5: Update block i to get(

x
(k)
1 , . . . , x

(k)
i−1, x

(k)
i , x

(k−1)
i+1 , . . . , x

(k−1)
s

)
6: end for
7: end for

Algorithm 1: General framework of BCD methods.

7 / 44

Block Coordinate Descent Methods

Denote f
(k)
i (xi) := f

(
x

(k)
1 , . . . , x

(k)
i−1, xi , x

(k−1)
i+1 , . . . , x

(k−1)
s

)
.

(First order) BCD methods can typically be classified into three
categories:

1 Classical BCD methods update each block of variables as follows

x
(k)
i = argmin

xi∈Ei

f
(k)
i (xi) + gi (xi) .

⊕ converge to a stationary point under suitable convexity assumptions.
	 fails to converge for some non-convex problems.

8 / 44

Block Coordinate Descent Methods

2 Proximal BCD methods update each block of variables as follows

x
(k)
i = argmin

xi∈Ei

f
(k)
i (xi) + gi (xi) +

1

2β
(k)
i

∥∥∥xi − x
(k−1)
i

∥∥∥2
.

⊕ The authors in [1] established, for the first time, the convergence of{
x (k)

}
to a critical point of F with non-convex setting and s = 2.

[1] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projection methods for

nonconvex problems: An approach based on the Kurdyka - Lojasiewicz inequality. Mathematics of Operations Research, 35(2) :

438–457, 2010.

9 / 44

Block Coordinate Descent Methods

3 Proximal gradient BCD methods update each block of variables as
follows

x
(k)
i = argmin

xi∈Ei

〈
∇f (k)

i

(
x

(k−1)
i

)
, xi − x

(k−1)
i

〉
+ gi (xi)

+
1

2β
(k)
i

∥∥∥xi − x
(k−1)
i

∥∥∥2
.

When gi (xi) = IXi
(xi) and ‖·‖ is Frobenius norm, we have

x
(k)
i = ProjXi

(
x

(k−1)
i − β(k)

i ∇f
(k)
i (x

(k−1)
i)

)
.

⊕ In the general non-convex setting, Bolte et al in [2] proved the
convergence of

{
x (k)

}
to a critical point of F when s = 2.

[2] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth

problems. Mathematical Programming, 146(1) : 459–494, Aug 2014.

10 / 44

Gradient descent method

When E = Rn, s = 1, g(x) = 0 and ‖·‖ is Frobenius norm, proximal
gradient BCD amounts to gradient descent method for unconstrained
optimization problem minx∈Rn f (x):

xk+1 = xk − βk∇f (xk).

Some remarks

It is a descent method when βk is appropriately chosen.

In the convex setting, the method does not have the optimal
convergence rate.

11 / 44

Acceleration by extrapolation

Heavy-ball method of Polyak [3]:

xk+1 = xk − βk∇f (xk) + θk(xk − xk−1).

Accelerated gradient method of Nesterov [4]:

yk = xk + θk(xk − xk−1)

xk+1 = yk − βk∇f (yk) = xk − βk∇f (yk) + θk(xk − xk−1)

Some remarks:

they are not descent methods,

in the convex setting, these methods are proved to achieve the
optimal convergence rate.

[3] B. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics

and Mathematical Physics, 4(5) : 1–17, 1964.

[4] Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet

Mathematics Doklady, 27(2), 1983.

12 / 44

Let’s recall

1 Classical BCD

x
(k)
i = argmin

xi∈Ei

f
(k)
i (xi) + gi (xi) .

2 Proximal BCD

x
(k)
i = argmin

xi∈Ei

f
(k)
i (xi) + gi (xi) +

1

2β
(k)
i

∥∥∥xi − x
(k−1)
i

∥∥∥2
.

3 Proximal gradient BCD

x
(k)
i = argmin

xi∈Ei

〈
∇f (k)

i

(
x

(k−1)
i

)
, xi

〉
+ gi (xi) +

1

2β
(k)
i

∥∥∥xi − x
(k−1)
i

∥∥∥2
.

13 / 44

The proposed methods: IBP and IBPG

Initialize: Choose x̃(0) = x̃(−1).
for k = 1, . . . do

x(k,0) = x̃(k−1).
for j = 1, . . . ,Tk do

Choose i ∈ {1, . . . , s} . Let yi be the value of the

ith block before it was updated to x
(k,j−1)
i .

Extrapolate

x̂i = x
(k,j−1)
i + α

(k,j)
i

(
x

(k,j−1)
i − yi

)
, (3)

and compute

x
(k,j)
i = argmin

xi

F
(k,j)
i (xi) +

1

2β
(k,j)
i

‖xi − x̂i‖
2
.

(4)

Let x
(k,j)

i′ = x
(k,j−1)

i′ for i′ 6= i .

end for
Update x̃(k) = x(k,Tk).

end for

Algorithm 2: IBP

Initialize: Choose x̃(0) = x̃(−1).
for k = 1, . . . do

x(k,0) = x̃(k−1).
for j = 1, . . . ,Tk do

Choose i ∈ {1, . . . , s}. Let yi be the value of the

ith block before it was updated to x
(k,j−1)
i .

Extrapolate

x̂i = x
(k,j−1)
i + α

(k,j)
i

(
x

(k,j−1)
i − yi

)
,

x̀i = x
(k,j−1)
i + γ

(k,j)
i

(
x

(k,j−1)
i − yi

)
,

(5)
and compute

x
(k,j)
i = argmin

xi

〈∇f
(k,j)
i (x̀i), xi − x

(k,j−1)
i 〉

+ gi (xi) +
1

2β
(k,j)
i

‖xi − x̂i‖
2
.

(6)

Let x
(k,j)

i′ = x
(k,j−1)

i′ for i′ 6= i .

end for
Update x̃(k) = x(k,Tk).

end for

Algorithm 3: IBPG

14 / 44

Assumption 1

For all k , all blocks
are updated after the
Tk iterations
performed within the
kth outer loop, and
there exists a positive
constant T̄ such that
s ≤ Tk ≤ T̄ .

An illustration

15 / 44

Notations

Table: Notation

Notation Definition

x(k,j) x at the jth iteration within the kth outer loop

x̃(k) the main generated sequence (the output)
Tk number of iterations within the kth outer loop

f
(k,j)
i (xi) a function of the ith block while fixing the latest updated values of the

other blocks, i.e.,

= f (x
(k,j−1)
1 , . . . , x

(k,j−1)
i−1 , xi , x

(k,j−1)
i+1 , . . . , x

(k,j−1)
s)

F
(k,j)
i (xi) F

(k,j)
i (xi) = f

(k,j)
i (xi) + gi (xi)

x̄
(k,m)
i the value of block i after it has been updated m times during the kth

outer loop
dk
i the total number of times the ith block is updated during the kth outer

loop

ᾱ
(k,m)
i the values of α

(k,j)
i ,

β̄
(k,m)
i the values of β

(k,j)
i ,

γ̄
(k,m)
i and the values of γ

(k,j)
i that are used in (3), (4), (5), (6), (7) and (8) to

update block i from x̄
(k,m−1)
i to x̄

(k,m)
i

{x̄(k,m)
i }k≥1 the sequence that contains the updates of the ith block, i.e.,

{. . . , x̄(k,1)
i , . . . , x̄

(k,dki)

i , . . .} 16 / 44

Extension to Bregman divergence

Definition (Bregman distance)

Let Hi : Ei → R be a strictly convex function that is continuously
differentiable. The Bregman distance associated with Hi is defined as:

Di (u, v) = Hi (u)− Hi (v)− 〈∇Hi (v), u − v〉 ,∀u, v ∈ Ei .

Example:

Let Hi (u) = 1
2‖u‖

2
2, we have Di (u, v) = 1

2‖u − v‖2
2.

17 / 44

Definition (Bregman proximal map)

For a given v ∈ Ei , and a positive number β, the Bregman proximal map
of a function φ is defined by

proxHi
β,φ(v) := argmin

{
φ(u) +

1

β
Di (u, v) : u ∈ Ei

}
.

Definition

For given u1 ∈ int domϕ, u2 ∈ Ei and β > 0, the Bregman proximal
gradient map of a pair of non-convex function (φ, ϕ) (ϕ is continuously
differentiable) is defined by

GproxHi
β,φ,ϕ(u1, u2) := argmin

{
φ(u) + 〈∇ϕ(u1), u〉+

1

β
Di (u, u2) : u ∈ Ei

}

18 / 44

Extension to Bregman divergence

Initialize: Choose x̃(0) = x̃(−1).
for k = 1, . . . do

x(k,0) = x̃(k−1).
for j = 1, . . . ,Tk do

Choose i ∈ {1, . . . , s} such that Assumption 1 is satisfied.
Update of IBP: extrapolate as in (3) and compute

x
(k,j)
i ∈ prox

Hi

β
(k,j)
i ,F

(k,j)
i

(x̂i) . (7)

Update of IBPG: extrapolate as in (5) and compute

x
(k,j)
i ∈ Gprox

Hi

β
(k,j)
i ,gi ,f

(k,j)
i

(x̀i , x̂i) . (8)

Let x
(k,j)
i′ = x

(k,j−1)
i′ for i ′ 6= i .

end for
Update x̃(k) = x(k,Tk).

end for

Algorithm 4: IBP and IBPG with Bregman divergence

19 / 44

Convergence Analysis

Assumptions

The function Hi , i = 1, . . . , s, is σi -strongly convex, continuously
differentiable and ∇Hi is LHi

-Lipschitz continuous.
Examples: The Euclidean distance (or, more generally, a quadratic
entropy distance) is a typical example of a Bregman distance that
satisfies this assumption. A non-typical simple example of Hi is
x ∈ R 7→ log(x +

√
1 + x2) + x2.

The proximal maps are well-defined.

The function F is bounded from below.

Considering Algorithm IBPG, we need to assume that ∇f (k,j)
i is

L
(k,j)
i -Lipschitz continuous, with L

(k,j)
i > 0. For notational clarity, we

correspondingly use L̄
(k,m)
i for L

(k,j)
i .

20 / 44

Subsequential convergence of IBP

Choosing parameters for IBP: Let 0 < ν < 1. For m = 1, . . . , dk
i and

i = 1, . . . , s, denote θ
(k,m)
i =

(
LHi ᾱ

(k,m)
i

)2

2νσi β̄
(k,m)
i

. Let θ
(k,dk

i +1)
i = θ

(k+1,1)
i . We

choose ᾱ
(k,m)
i and β̄

(k,m)
i satisfying (1−ν)σi

2β̄
(k,m)
i

≥ δθ(k,m+1)
i , for

m = 1, . . . , dk
i , where δ > 1.

Assumption

There exist positive numbers W1, α and β such that θ
(k,m)
i ≥W1,

ᾱ
(k,m)
i ≤ α and β ≤ β̄(k,m)

i for all k ∈ N, m = 1, . . . , dk
i and i = 1, . . . , s.

Theorem

If F is regular then every limit point of
{
x̃ (k)

}
k∈N is a critical point type I

of F . If f is continuously differentiable then every limit point of
{
x̃ (k)

}
k∈N

is a critical point type II of F .

21 / 44

Some definitions

For any x ∈ domϕ, and d ∈ E, we denote the directional derivative
of ϕ at x in the direction d by

ϕ′ (x ; d) = lim inf
τ↓0

ϕ(x + τd)− ϕ(x)

τ
.

For each x ∈ domϕ, we denote ∂̂ϕ(x) as the Frechet subdifferential
of ϕ at x which contains vectors v ∈ E satisfying

lim inf
y 6=x ,y→x

1

‖y − x‖
(ϕ(y)− ϕ(x)− 〈v , y − x〉) ≥ 0.

If x 6∈ dom ϕ, then we set ∂̂ϕ(x) = ∅.
The limiting-subdifferential ∂ϕ(x) of ϕ at x ∈ dom ϕ is

∂ϕ(x) :=
{
v ∈ E : ∃x (k) → x , ϕ

(
x (k)

)
→ ϕ(x), v (k) ∈ ∂̂ϕ

(
x (k)

)
,

v (k) → v
}
.

22 / 44

Some definitions

We say that x∗ ∈ domF is a critical point type I of F if
F ′(x∗; d) ≥ 0, ∀ d .

We say that F is regular at x ∈ domF if for all d = (d1, . . . , ds) such
that F ′ (z ; (0, . . . , di , . . . , 0)) ≥ 0, i = 1, . . . , s, then F ′(x ; d) ≥ 0.

We call x∗ ∈ domF a critical point type II of F if 0 ∈ ∂F (x∗) .

We note that if x∗ is a minimizer of F then x∗ is a critical point type I and
type II of F .

23 / 44

Subsequential convergence of IBPG

Choosing parameters for IBPG: Choose β̄
(k,m)
i = σi

κL̄
(k,m)
i

with κ > 1.

Let 0 < ν < 1. For m = 1, . . . , dk
i , and i = 1, . . . , s denote

λ
(k,m)
i = 1

2

(
γ̄

(k,m)
i +

κLHi ᾱ
(k,m)
i

σi

)2
L̄

(k,m)
i

ν(κ−1) . Let λ
(k,dk

i +1)
i = λ

(k+1,1)
i . We

choose ᾱ
(k,m)
i , β̄

(k,m)
i and γ̄

(k,m)
i satisfying

(1−ν)(κ−1)L̄
(k,m)
i

2 ≥ δλ(k,m+1)
i , for

m = 1, . . . , dk
i , where δ > 1.

Assumption

There exist positive numbers W1, L, α and γ such that λ
(k,m)
i ≥W1,

L̄
(k,m)
i ≤ L, ᾱ

(k,m)
i ≤ α and γ̄

(k,m)
i ≤ γ for all k ∈ N, m = 1, . . . , dk

i and
i = 1, . . . , s.

Theorem

Every limit point of
{
x̃ (k)

}
k∈N is a critical point type II of F .

24 / 44

Relaxing conditions for block-convex F

For IBP, if F is block-wise convex then we can choose ᾱ
(k,m)
i and β̄

(k,m)
i

satisfying
2(1− ν)σi

β̄
(k,m)
i

≥ δθ(k,m+1)
i , for m = 1, . . . , dk

i . (9)

This condition allows larger values of ᾱ
(k,m)
i when using the same β̄

(k,m)
i .

Relaxing conditions for convex gi ’s

For IBPG, if the functions gi ’s are convex we can use

β̄
(k,m)
i = σi/L̄

(k,m)
i , λ

(k,m)
i =

1

2

(
γ̄

(k,m)
i +

LHi
ᾱ

(k,m)
i

σi

)2
L̄

(k,m)
i

ν
,

and choose ᾱ
(k,m)
i and γ̄

(k,m)
i satisfying

(1−ν)L̄
(k,m)
i

2 ≥ δλ(k,m+1)
i for

m = 1, . . . , dk
i ,. This condition allows a larger stepsize.

25 / 44

Relaxing conditions for block-convex f and convex gi ’s

For IBPG, if the gi ’s are convex and f (x) is block-wise convex, then we
can use larger extrapolation parameters. Specifically, we choose

Hi (xi) = 1
2 ‖xi‖

2 and let β̄
(k,m)
i = 1/L̄

(k,m)
i and

λ
(k,m)
i =

(γ̄(k,m)
i

)2
+

(
γ̄

(k,m)
i − ᾱ(k,m)

i

)2

ν

 L̄
(k,m)
i

2
,

where 0 < ν < 1, and choose ᾱ
(k,m)
i and γ̄

(k,m)
i satisfying

1− ν
2

L̄
(k,m)
i ≥ δλ(k,m+1)

i , for m = 1, . . . , dk
i .

26 / 44

Global convergence

We modify the proof recipe proposed by J. Bolte, S. Sabach, and M.
Teboulle (Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Mathematical Programming, 146(1) : 459–494, Aug
2014) so that it is applicable to our proposed methods.

Definition (KL function)

A function φ(x) is said to have the Kurdyka- Lojasiewicz (KL) property at
x̄ ∈ dom ∂ φ if there exists η ∈ (0,+∞], a neighborhood U of x̄ and a concave
function ξ : [0, η)→ R+ that is continuously differentiable on (0, η), continuous
at 0, ξ(0) = 0, and ξ′(s) > 0 for all s ∈ (0, η), such that for all
x ∈ U ∩ [φ(x̄) < φ(x) < φ(x̄) + η], the following inequality holds

ξ′ (φ(x)− φ(x̄)) dist (0, ∂φ(x)) ≥ 1.

If φ(x) satisfies the KL property at each point of dom ∂φ then φ is a KL function.

Some noticeable examples include real analytic functions, semi-algebraic
functions, locally strongly convex functions.

27 / 44

Theorem (Global convergence recipe)

Let Φ : RN → (−∞,+∞] be a proper and lower semicontinuous function which is bounded
from below. Let A be a generic algorithm which is assumed to generate a bounded sequence{
z(k)

}
k∈N by

z(0) ∈ RN , z(k+1) ∈ A
(
z(k)

)
, k = 0, 1,

Assume that there exist positive constants ρ1, ρ2 and ρ3 and a nonnegative sequence {ζk}k∈N
such that the following conditions are satisfied

(B1) Sufficient decrease property:

ρ1

∥∥∥z(k) − z(k+1)
∥∥∥2
≤ ρ2ζ

2
k ≤ Φ

(
z(k)

)
− Φ

(
z(k+1)

)
, ∀k = 0, 1, . . .

(B2) Boundedness of subgradient:∥∥∥w (k+1)
∥∥∥ ≤ ρ3ζk , w (k) ∈ ∂Φ

(
z(k)

)
, ∀k = 0, 1, . . .

Furthermore, assume that

(B3) KL property: Φ is a KL function.

(B4) A continuity condition: If a subsequence
{
z(kn)

}
n∈N of

{
z(k)

}
converges to z̄ then

Φ
(
z(kn)

)
→ Φ (z̄) as n→∞.

Then we have
∑∞

k=1 ζk <∞, and
{
z(k)

}
converges to a critical point type II of Φ.

28 / 44

Convergence rate

The following theorem establish the convergence rate under Lojasiewicz
property.

Theorem

Suppose Φ is a KL function and ξ(a) of the KL function definition has the
form ξ(a) = Ca1−ω for some C > 0 and ω ∈ [0, 1). Then we have

(i) If ω = 0 then {z(k)} converges after a finite number of steps.

(ii) If ω ∈ (0, 1/2] then there exists ω1 > 0 and ω2 ∈ [0, 1) such that∥∥z(k) − z̄
∥∥ ≤ ω1ω

k
2 .

(iii) If ω ∈ (1/2, 1) then there exists ω1 > 0 such that∥∥z(k) − z̄
∥∥ ≤ ω1k

−(1−ω)/(2ω−1).

29 / 44

Theorem (Global convergence of IBP and IBPG)

Assumption

The sequences
{
x̃ (k)

}
k∈N generated by IBP and IBPG are bounded.

(Note: this condition is satisfied when F has bounded level sets).

f is continuously differentiable and ∇f is Lipschitz continuous on
bounded subsets of E.

There exists a constant W2 such that, for all k ∈ N, m = 1, . . . , dk
i

and i = 1, . . . , s, we have θ
(k,m)
i ≤W2 for IBP, λ

(k,m)
i ≤W2 for IBPG

and δ > (LHW2)/(σW1).

Assume F is a KL-function.

Then the whole sequence
{
x̃ (k)

}
k∈N generated by IBP or IBPG converges

to a critical point type II of F .

30 / 44

Applying IBPG to solve NMF with s = 2

min
U,V

1

2
‖X − UV ‖2

F + IRm×r
+

(U) + IRr×n
+

(V).

We choose the Frobenius norm for (6). We have ∇U f = UVVT − XVT and
∇V f = UTUV − UTX , hence (6) is a projected gradient step.

IBPG should update U or V several times before updating the other one. This strategy
accelerates the algorithm compared to the pure cyclic update rule, see [5].

Choosing parameters

We have L̄
(k,m)
1 = L̃

(k)
1 =

∥∥∥(Ṽ (k−1)
)T

Ṽ (k−1)
∥∥∥, and L̄

(k,m)
2 = L̃

(k)
2 =

∥∥∥(Ũ(k)
)T

Ũ(k)
∥∥∥ for m ≥ 1.

We choose β̄
(k,m)
i = 1/L̃

(k)
i , γ̄

(k,m)
i = min

{
τk−1
τk

, γ̆

√
L̃

(k−1)
i

L̃
(k)
i

}
, and ᾱ

(k,m)
i = ᾰγ̄

(k,m)
i , where

τ0 = 1, τk = 1
2

(1 +
√

1 + 4τ2
k−1) , γ̆ = 0.99 and ᾰ = 1.01.

The parameters satisfy the relaxing conditions for block-convex f and convex gi ’s. IBPG for
NMF guarantees a subsequential convergence.

[5] N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix

factorization. Neural Computation, 24(4):10851105, 2012.

31 / 44

Applying IBP to solve NMF with s = 2r

min
U:i ,Vi :

1

2

∥∥X − r∑
i=1

U:iVi :

∥∥2

F
+

r∑
i=1

IRm
+

(U:i) +
2r∑

i=r+1

IRn
+

(Vi :).

Applying IBP:
We choose the Frobenius norm for (4). Equation (4) has the closed form solution

argmin
U:i≥0

∑ 1

2

∥∥X − i−1∑
q=1

U:qVq: −
r∑

q=i+1

U:qVq: − U:iVi :

∥∥2

+
1

2βi

∥∥U:i − Û:i

∥∥2

= max
(

0,
XVT

i : − (UV)VT
i : + U:iVi :V

T
i : + 1/βi Û:i

Vi :V
T
i : + 1/βi

)
,

IBP should update the columns of U and the rows of V several times before doing so for
the other one.

Choosing parameters

We choose 1/β
(k,m)
i = 0.001 and α

(k,m)
i = α̃(k) = min(β̄, γα̃(k−1)), with β̄ = 1, γ = 1.01 and

α̃(1) = 0.6.

These parameters satisfy the global convergence conditions, hence IBP for NMF guarantees a
global convergence.

32 / 44

Preliminary numerical results

We use the following notations for NMF algorithms:

IBP: this is our proposed IBP algorithm.

IBPG: this is our proposed IBPG algorithm when U and V are cyclically updated.

IBPG-A: this is our proposed IBPG algorithm when we update U several times before
updating V , and vice versa.

iPALM: the inertial proximal alternating linearized minimization method proposed in [6].

A-HALS: the accelerated hierarchical alternating least squares algorithm in [7].

E-A-HALS: the acceleration version of A-HALS using extrapolation points proposed in [8].
This algorithm was experimentally shown to outperform A-HALS. This is, as far as we
know, one of the most efficient NMF algorithms. Note that E-A-HALS is a heuristic with
no convergence guarantees.

APGC: the accelerated proximal gradient coordinate descent method proposed in [9].

[6] T. Pock and S. Sabach. Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth

problems. SIAM Journal on Imaging Sciences, 9(4):1756–1787, 2016.

[7] N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix

factorization. Neural Computation, 24(4):1085–1105, 2012.

[8] A. M. S. Ang and N. Gillis. Accelerating nonnegative matrix factorization algorithms using extrapolation. Neural

Computation, 31(2):417–439, 2019.

[9] Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization with applications to

nonnegative tensor factorization and completion. SIAM Journal on Imaging Sciences, 6(3):1758–1789, 2013.

33 / 44

We define relative errors

relerrork =

∥∥∥X − Ũ(k)Ṽ (k)
∥∥∥
F

‖X‖F
.

We let

emin = 0 for the experiments with low-rank synthetic data sets, and

in the other experiments, emin is the lowest relative error obtained by
any algorithms with any initializations

We define
E (k) = relerrork − emin.

34 / 44

Low-rank synthetic data sets

Two low-rank matrices of size 200× 200 and 200× 500 are generated
by letting X = UV , where U and V are generated by MATLAB
commands rand(m, r) and rand(r,n) respectively, with r = 20.

For each matrix X , we run all algorithms with the same 50 random
initializations W0 = rand(m, r) and V0 = rand(r,n), and for each
initialization we run each algorithm for 20 seconds.

35 / 44

Low-rank synthetic data sets

5 10 15 20

Time (s.)

10-7

10-6

10-5

10-4

10-3

||X
-U

V
|| F

 /
||X

|| F
 -

 e
m

in

A-HALS
E-A-HALS
IBPG-A
IBP
APGC
IBPG
iPALM

5 10 15 20

Time (s.)

1

1.5

2

2.5

3

3.5

4

4.5

||X
-U

V
|| F

 /
||X

|| F
 -

 e
m

in

10-3

A-HALS
E-A-HALS
IBPG-A
IBP
APGC
IBPG
iPALM

Figure: Average value of E (k) with respect to time on 2 random low-rank
matrices: 200× 200 (left) and 200× 500 (right).

36 / 44

Low-rank synthetic data sets

To compare the accuracy of the solutions, we generate 80 random
low-rank m× n matrices, m and n are random integer numbers in the
interval [200,500]. For each X we run the algorithms for 20 seconds with 1
random initialization.

Table: Average, standard deviation and ranking of the value of E (k) at the last
iteration among the different runs on the low-rank synthetic data sets. The best
performance is highlighted in bold.

Algorithm mean ± std ranking

A-HALS 1.227 10−3 ± 7.365 10−4 (1, 0, 3, 4, 7, 24, 41)
E-A-HALS 8.501 10−4 ± 6.882 10−4 (16, 10, 12, 13, 17, 3, 9)
IBPG-A 5.036 10−4 ± 5.522 10−4 (39, 10, 14, 10, 3, 2, 2)
IPG 1.209 10−3 ± 7.386 10−4 (0, 3, 5, 7, 15, 39, 11)

APGC 8.726 10−4 ± 6.561 10−4 (3, 10, 14, 22, 18, 3, 10)
IBPG 6.621 10−4 ± 6.371 10−4 (17, 17, 15, 11, 14, 2, 4)
iPALM 6.759 10−4 ± 6.302 10−4 (17, 22, 13, 12, 6, 7, 3)

37 / 44

Full-rank synthetic data sets

Two full-rank matrices of size 200× 200 and 200× 500 are generated
by MATLAB command X = rand(m, n). We take r = 20.

For each matrix X , we run all algorithms with the same 50 random
initializations W0 = rand(m, r) and V0 = rand(r,n), and for each
initialization we run each algorithm for 20 seconds.

38 / 44

Full-rank synthetic data sets

5 10 15 20

Time (s.)

2

2.5

3

3.5

4

4.5

5

||X
-U

V
|| F

 /
||X

|| F
 -

 e
m

in

10-4

A-HALS
E-A-HALS
IBPG-A
IBP
APGC
IBPG
iPALM

5 10 15 20

Time (s.)

1

2

3

4

5

6

7

8

||X
-U

V
|| F

 /
||X

|| F
 -

 e
m

in

10-4

A-HALS
E-A-HALS
IBPG-A
IBP
APGC
IBPG
iPALM

Figure: Average value of E (k) with respect to time on 2 random full-rank
matrices: 200× 200 (left) and 200× 500 (right).

39 / 44

Full-rank synthetic data sets

We then generate 80 full-rank matrices X = rand(m, n), with m and n
being random integer numbers in the interval [200,500]. For each matrix
X , we run the algorithms for 20 seconds with a single random initialization.

Table: Average, standard deviation and ranking of the value of E (k) at the last
iteration among the different runs on full-rank synthetic data sets. The best
performance is highlighted in bold.

Algorithm mean ± std ranking

A-HALS 0.450056± 7.688 10−3 (5, 17, 11, 10, 10, 11, 16)
E-A-HALS 0.450055± 7.684 10−3 (13, 11, 8, 17, 8, 7, 16)
IBPG-A 0.450052 ± 7.682 10−3 (25, 5, 11, 7, 7, 16, 9)
IPG 0.450057± 7.686 10−3 (14, 14, 10, 10, 11, 16, 5)

APGC 0.450060± 7.682 10−3 (7, 7, 18, 12, 12, 9, 15)
IBPG 0.450062± 7.671 10−3 (13, 10, 10, 10, 18, 7, 12)
iPALM 0.450060± 7.683 10−3 (4, 15, 12, 15, 15, 12, 7)

40 / 44

Experiments with real data sets

We test the algorithms on Urban and San Diego data sets. We choose the
rank r = 10. For each data set, we generate 35 random initializations and
for each initialization we run each algorithm for 200 seconds.

Time (s.)

||X
-U

V
|| F

/||
X

|| F
 -

 e
m

in

Time (s.)

||X
-U

V
|| F

/||
X

|| F
 -

 e
m

in

Figure: Average value of E (k) with respect to time on 2 hyperspectral images:
urban (the left) and SanDiego (the right).

41 / 44

Dense hyperspectral images

Table: Average error, standard deviation and ranking among the different runs for
urban and SanDiego data sets.

Algorithm mean ± std ranking

E-A-HALS 0.018823± 6.739 10−4 (17, 28, 25)
IBPG-A 0.018316± 9.745 10−4 (53, 15, 2)
APGC 0.018728± 7.779 10−4 (0, 27, 43)

42 / 44

More experiments on NMF and NCPD can be found in the supplementary
material of our paper.

43 / 44

Thank you!

44 / 44

	Problem set up
	Motivation
	Block Coordinate Descent Methods

	The proposed methods: IBP and IBPG
	Extension to Bregman divergence

	Convergence Analysis
	Subsequential convergence
	Global convergence

	Application to NMF
	Preliminary numerical results

