Inertial Block Proximal Methods for

Non-Convex Non-Smooth Optimization

L. T. K. Hien! N. Gillis! P. Patrinos 2

LUniversity of Mons

2KU Leuven

The 37th International Conference on Machine Learning
ICML 2020



@ Problem set up
@ Motivation
@ Block Coordinate Descent Methods

9 The proposed methods: IBP and IBPG
@ Extension to Bregman divergence

© Convergence Analysis
@ Subsequential convergence
@ Global convergence

@ Application to NMF

© Preliminary numerical results



Problem set up

We consider the following non-smooth non-convex optimization problem

TEIE F(x), where F(x):=f(x)+ g(x), (1)

and

@ x is partitioned into s blocks/groups of variables:
x=(x1,...,%) EE=E; x...xEgwith E;, i =1,...,s, being
finite dimensional real linear spaces equipped with the norm ||-[| ;) and
the inner product (-,-),

e f:E — R is a continuous but possibly non-smooth non-convex
function, and

o g(x)=>7,gi(x) with gi : E; > RU {+o0} for i =1,...,s are
proper and lower semi-continuous functions.



Nonnegative matrix factorization — A motivation

Given X € RT™" and the integer r < min(m, n), solve

U>0 V>O 2 HX UVHF SUCh that U & Rmxrand V c RI’XH.

NMF is a key problem in data analysis and machine learning with
applications in

@ image processing,

@ document classification,
@ hyperspectral unmixing,
°

audio source separation.



Nonnegative matrix factorization — A motivation

Given X € RT™" and the integer r < min(m, n), solve

U>0 v>o 2

HX UV||Z such that U € R "and V € R*".

Let f(U,V) =3 |X - UV|z,
gi(U) = ]IRer(U) and
gz(V)—HRan( )-

NMF is rewrltten as

rlr]’io f(U,V)+gi(U)+ (V).

o’

Let (U, Vi) = ]| X — zuvm

(U.
&i(U >=H <.,-),:—1
g,+r(V):HRn(V) I—].
NMF is rewritten as

f(U.;, Vi. ;
&’,‘,'\r), (U. )+’Zlg(

,r, and

2r
i)+ 2 ai

i=r+1

Vi),

v
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Non-negative approximate canonical polyadic

decomposition (NCPD)

We consider the following NCPD problem: given a non-negative tensor
T € Rhxhx..xIv and a specified order r, solve
2

f::%HT—X(l)o...oX(N)HF )

min
X, x(M)
such that X ¢ ]Rﬂ';xr, n=1,...,N,

where the Frobenius norm of a tensor T € RA*%2X--XIn is defined as
Tl = \/Zil ; T,f,z iy and the tensor product X = XWo. .  oxN

is defined as Xiyj,..iy = 320y XX X for iy € {1, 1a},

nJ

n=1,...,N. Here XI.S-") is the (i ,_j)—th element of X(")_ Let
gi(X) = HRT,(X(")). NCPD is rewritten as

N
in  AX® .. xV) (X (),
o™ (x®, .., )+Zg( )



Block Coordinate Descent Methods

1: Initialize: Choosing initial point x(%) and other parameters.
2. for k=1,...do

3 fori=1,...,sdo
4 Fix the latest values of the blocks j # i:
(X(k) (k) (k1) X(k—l))
1 20— A4 A R
5: Update block i to get
k k k) (k-1 k—1
R IO R )
6: end for
7: end for

Algorithm 1: General framework of BCD methods.



Block Coordinate Descent Methods

Denote £(x)) i= £ (x{*,....x) i xfiy D).

(First order) BCD methods can typically be classified into three
categories:

@ Classical BCD methods update each block of variables as follows

x,-(k) = argmin f,-(k) (xi) + &i (xi) -
X €E;

@ converge to a stationary point under suitable convexity assumptions.
© fails to converge for some non-convex problems.



Block Coordinate Descent M

@ Proximal BCD methods update each block of variables as follows

(k) _ < o(k) o Ay -
X = a;ger;:::nﬁ (xi) + &i (xi) + 2B(k) H

1

Xi — X;

ool

@ The authors in [1] established, for the first time, the convergence of
{x(0)} to a critical point of F with non-convex setting and s = 2.

[1] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projection methods for
nonconvex problems: An approach based on the Kurdyka - Lojasiewicz inequality. Mathematics of Operations Research, 35(2) :

438-457, 2010.
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Block Coordinate Descent Methods

© Proximal gradient BCD methods update each block of variables as

follows
xl.(k) = argmin <Vf,-(k) (x,.(k_l)> ) Xj — X,-(k_l)> + & (x7)
xi€E;
1 12
+W’X"‘Xf(k l)H '
25;
When gi(x;) = Ix.(x;) and ||| is Frobenius norm, we have

x,-(k) = Projx. (x-(k_l) - Bfk)Vfi(k)(x-(k_l))).

1 1

@ In the general non-convex setting, Bolte et al in [2] proved the
convergence of {x(¥)} to a critical point of F when s = 2.

[2] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth

problems. Mathematical Programming, 146(1) : 459-494, Aug 2014.
10/ 44



Gradient descent method

When E =R", s =1, g(x) =0 and ||-|| is Frobenius norm, proximal
gradient BCD amounts to gradient descent method for unconstrained
optimization problem min,crn f(x):

Xk1 = Xk — BV (xk).

Some remarks

@ It is a descent method when By is appropriately chosen.

@ In the convex setting, the method does not have the optimal
convergence rate.

11 /44



Acceleration by extrapolation

Heavy-ball method of Polyak [3]:
X1 = Xk — BV (xi) + 01 (X — xi—1)-

Accelerated gradient method of Nesterov [4]:

Vi = Xk + Ok (X — Xk—1)
Xk+1 = Yk — BV (yi) = xic — BV F(yi) + Ok(xx — xk—1)

Some remarks:

@ they are not descent methods,

@ in the convex setting, these methods are proved to achieve the
optimal convergence rate.

[3] B. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5) : 1-17, 1964.
[4] Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k?). Soviet

Mathematics Doklady, 27(2), 1983.
12 /44



Let’s recall

@ C(lassical BCD

x,.(k) = argmin fi(k) (xi) + &i (xi) -

x; €E;
@ Proximal BCD
1 - 2
xl.(k) = argmin fi(k) (xi) + &i (xi) + —m Hx,- — xl.(k l)H :
x;€E; 26[

© Proximal gradient BCD

2
k—1
Xj — X} )“ .

13 /44



The proposed methods: IBP and IBPG

Initialize: Choose %(0) = %(~1).
fork=1,...do
x(k:0) — g(k—=1)
forj=1,..., Ty do

Choose i € {1,...,s} . Let y; be the value of the
(ksj—1)

ith block before it was updated to X
Extrapolate

= 1D ol (9 ) g

and compute

T = argmin £ () + llx: — %1
i i ! B(k )
, @
Let x(k’J) I_(,k‘J D for i F#i.
end for

Update k) = x(k:T)

end for
Algorithm 2: IBP

Initialize: Choose %(0) = x(=1),
fork=1,...do
(K0) _ g(k—1)
forj=1,..., T, do

Choose i € {1,...,s}. Let y; be the value of the
ith block before it was updated to X/.(k’Jil).
Extrapolate

% = Xi(kvjfl) + al(k«i) (X((k,j—l) _ y,-) ,
x = XI_(k,jfl) + ,Ylgk,j) (Xl_(k,jfl) _ Yi) ,
(5)
and compute
x,.(k’j) = argmin(Vfl.(k’j)(x ), Xxi — x}k’j71)>
(6)

+ &0 +
28

Let xl_(,k’j) = x/,(,k’j for i’ # i.
end for
Update k) =

end for
Algorithm 3: IBPG

(ks Ti)

14 /44



Assumption 1

For all k, all blocks
are updated after the
T iterations
performed within the
kth outer loop, and
there exists a positive
constant T such that

s<Te<T.

An illustration

[TTTT] e (k=1)

(N ———— X
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Table: Notation

Notation Definition

x(kJ) x at the jth iteration within the kth outer loop

(k) the main generated sequence (the output)

Tk number of iterations within the kth outer loop

fi(k’J)(x,-) a function of the ith block while fixing the latest updated values of the
other blocks, i.e.,

k,j—1 k,j—1 k,j—1 k,j—1
B N (Y N S V()
k,j ko kj

F*9) (x)) FRD (x) = £59 (x0) + gi(x)

)‘(i(k’m) the value of block i after it has been updated m times during the kth
outer loop

d,-k the total number of times the ith block is updated during the kth outer
loop

_fk’m) the values of aEk’J),

Bfk’m) the values of Bfkd),

ﬁfk’m) and the values of vfk’j) that are used in (3), (4), (5), (6), (7) and (8) to
update block i from ii(k’mfl) to >'<l.(k’m)

{)'(i(k’m)}kZI the sequence that contains the updates of the ith block, i.e.,

—(k,1) _(k,dk)

{577,005 .- 16 /44



Extension to Bregman divergence

Definition (Bregman distance)

Let H; : E; — R be a strictly convex function that is continuously
differentiable. The Bregman distance associated with H; is defined as:

Di(u,v) = Hi(u) — Hi(v) — (VH;(v),u — v) ,Vu,v € E;.

Example:

o Let H;(u) = 3||u||3, we have D;(u,v) = &|ju— v|3.

17 /44



Definition (Bregman proximal map)

For a given v € E;, and a positive number 3, the Bregman proximal map
of a function ¢ is defined by

prox;;fd)(v) := argmin {qb(u) + ;D;(u, v):iu€ E;} .

| A

Definition

For given u; € intdom ¢, up € E; and 8 > 0, the Bregman proximal
gradient map of a pair of non-convex function (¢, ¢) (¢ is continuously
differentiable) is defined by

: 1
Gproxg’mp(ul, up) := argmin {(b(u) + (Vo(ur), u) + ED,-(U, w):ue€ E,}

v

18/ 44



Extension to Bregman divergence

Initialize: Choose %(0 = x(=1),

for k=1,...do
X(k 0) — X(k 1)
forj=1,..., T do
Choose i € {1,...,s} such that Assumption 1 is satisfied.
Update of IBP: extrapolate as in (3) and compute

(kvf) H; s
€ PrOX ) plhod (%) - )

Update of IBPG: extrapolate as in (5) and compute

k, H; NN
( ) e Gprox B( 9 g4 (Xis %i) - (8)

H »8is

Let x) = X071 for j7 £ 4.
end for
Update %K) = x(k,Tk).
end for

Algorithm 4: IBP and IBPG with Bregman divergence

19/ 44



Convergence Analysis

@ The function H;, i =1,...,s, is o;-strongly convex, continuously
differentiable and V H; is Ly -Lipschitz continuous.
Examples: The Euclidean distance (or, more generally, a quadratic
entropy distance) is a typical example of a Bregman distance that
satisfies this assumption. A non-typical simple example of H; is

x € R log(x + v1+ x2) + x2.

@ The proximal maps are well-defined.

@ The function F is bounded from below.

o Considering Algorithm IBPG, we need to assume that Vfi(k”) is

Lgk”)—Lipschitz continuous, with Lgk") > 0. For notational clarity, we
P

i

correspondingly use L for

20/ 44



Subsequential convergence of IBP

Choosing parameters for IBP: Let 0 <v < 1. For m=1,...,d* and

Ly.allom K
i=1,...,s, denote G(k’m) = (2H") Let G(k diHD) 05k+1,1). We

choose a(k ™ and ﬁ sat|5fy|ng (B v)oi 59(k mE1) o

I

m:l,...,di,where5>1.

Assumption

There exist positive numbers Wi, @ and 3 such that ng’m) > Wi,

&(k’m)<aand,8<5§k’m forall ke N, m=1,...,d"and i =1

|
|
|
&
—x
n
\

Theorem

If F is regular then every limit point of {)?(k)}keN is a critical point type |

of F. If f is continuously differentiable then every limit point of {%(X},
is a critical point type Il of F.

v
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Some definitions

@ For any x € dom ¢, and d € E, we denote the directional derivative
of ¢ at x in the direction d by
d) —
 (x: d) = lim inf £XFT) Z0()
710 T

@ For each x € dom ¢, we denote 590(x) as the Frechet subdifferential
of ¢ at x which contains vectors v € E satisfying

L 1
Jminf g (PO = e(x) = vy =x)) 2 0.

If x & dom ¢, then we set dp(x) = 0.
@ The limiting-subdifferential Op(x) of ¢ at x € dom ¢ is

do(x) = {v eE:3x(K - x, go(x(k)) — p(x), v e égo(x(k)),
vk v}.

22 /44



Some definitions

@ We say that x* € dom F is a critical point type | of F if
F'(x*;d) > 0,Vd.

o We say that F is regular at x € dom F if for all d = (dh, ..., ds) such
that F'(z;(0,...,d;,...,0)) >0,i=1,...,s, then F/(x;d) > 0.

@ We call x* € domF a critical point type Il of F if 0 € OF (x*).

We note that if x* is a minimizer of F then x* is a critical point type | and
type Il of F.

23 /44



Subsequential convergence of IBPG

g

Choosing parameters for IBPG: Choose B(k’m) = Gy with £ > 1.

let0<v <1l Form=1,. I and i =1,...,s denote

ey B

(km)\ 2 7(k,m) p
Akm) % <,—Y(k7m) + KLy o ) L Let /\gk,d,- +1) _ )\gk+1,1)_ We

i i o v(k—1)"

(k,m)

choose &; ) and ok
m=1,. ..,d,,where5> 1.

—v)(k—1)Lm m
_ (k,m) /B (k,m) (1—v)( 21)L/ > (S)\I('k7 +1), for

satisfying

Assumption

There exist positive numbers W, L, @ and 7 such that )\(.k’m) > Wi,
[%m < T a*™ <@and 3™ <y forall ke N, m=1,...,d* and
i=1

I
| Sn
\,

Theorem

Every limit point of {)?(k)}keN is a critical point type Il of F.

v
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Relaxing conditions for block-convex F

1
=
|
=~

For IBP, if F is block-wise convex then we can choose o'zI(k’m and ﬁ-k m)
satisfying

2(1 — 7

AL=0)ai o splemtD) 1 gk, (9)
IB(kvm) L !

1

: . k
This condition allows larger values of allom)

when using the same Bg m).

-
|
01
=
A\

Relaxing conditions for convex g;

For IBPG, if the functions g;'s are convex we can use

2 _
LH a(k m) ) Lgk,m)

] I

14

o) m T m m 1 - m
R R

agj

7(k,m)
and choose &A™ and 54 saisying U 5 5y 0m D o
k

m=1,...,d,. This condition allows a Iarger stepsize.

25 /44



Relaxing conditions for block-convex f and convex g;'s

For IBPG, if the g;'s are convex and f(x) is block-wise convex, then we
can use larger extrapolation parameters. Specifically, we choose
Hi(x;) = L ||xi[1? and let 3™ = 1/1%™ and

O P e o A

(k,m)

i

(k,m)

where 0 < v <1, and choose @; and ¥ satisfying

]-_ T m m
> Zrtem > salemtD) gor m=1,..., dk.

26 /44



Global convergence

We modify the proof recipe proposed by J. Bolte, S. Sabach, and M.
Teboulle (Proximal alternating linearized minimization for nonconvex and
nonsmooth problems. Mathematical Programming, 146(1) : 459-494, Aug
2014) so that it is applicable to our proposed methods.

Definition (KL function)

A function ¢(x) is said to have the Kurdyka-tojasiewicz (KL) property at

X € dom 0 ¢ if there exists n € (0, +00], a neighborhood U of X and a concave
function & : [0,n) — R that is continuously differentiable on (0,7), continuous
at 0, £(0) =0, and &'(s) > 0 for all s € (0,7), such that for all

x e UN[o(x) < o(x) < ¢(X) + n], the following inequality holds

¢ (¢(x) — (%)) dist (0, 0¢(x)) > 1.

If ¢(x) satisfies the KL property at each point of dom d¢ then ¢ is a KL function.

v

Some noticeable examples include real analytic functions, semi-algebraic
functions, locally strongly convex functions.

27 / 44



Theorem (Global convergence recipe)

Let & : RN — (—o0, +00] be a proper and lower semicontinuous function which is bounded
from below. Let A be a generic algorithm which is assumed to generate a bounded sequence

{Z(k)}ke\] by
20 ¢ RV, Z(k+1) ¢ 4 (z(k)) . k=0,1,....

Assume that there exist positive constants pi, p2> and p3 and a nonnegative sequence {Ck}keN
such that the following conditions are satisfied

(B1) Sufficient decrease property:
o2 z<k+1>H2 <mG <o (W) —o (26D, vk=01,..
(B2) Boundedness of subgradient:
HW(M)H < psce, w) € 80 (zm) . Vk=01,...

Furthermore, assume that

(B3) KL property: ® is a KL function.

(B4) A continuity condition: If a subsequence {z(k")}neN of {z(k)} converges to Z then
@ (ztk)) — & (2) as n — oo.

Then we have > 72 ¢k < oo, and {z(k)} converges to a critical point type Il of ®.

44



Convergence rate

The following theorem establish the convergence rate under Lojasiewicz
property.

Theorem

Suppose ¢ is a KL function and £(a) of the KL function definition has the
form £(a) = Ca*™* for some C > 0 and w € [0,1). Then we have

(i) Ifw =0 then {z(K)} converges after a finite number of steps.

(ii) Ifw € (0,1/2] then there exists wi > 0 and wy € [0, 1) such that
1209 = 2] < wnok.

(i) Ifw € (1/2,1) then there exists w1 > 0 such that
Hz(k) _ ZH < wik—(1=w)/(2w-1),

29 /44



Theorem (Global convergence of IBP and IBPG)

Assumption
@ The sequences {)?(k)}keN generated by IBP and IBPG are bounded.
(Note: this condition is satisfied when F has bounded level sets).

o f is continuously differentiable and Vf is Lipschitz continuous on
bounded subsets of E.

@ There exists a constant W5 such that, forall k e N, m=1,..., d,-k
andi=1,....s, we have 6™ < W, for IBP, \*™ < W, for IBPG
and § > (LHWQ)/(O'W;[).

@ Assume F is a KL-function. )

Then the whole sequence {)?(k)}keN generated by IBP or IBPG converges
to a critical point type Il of F.

30/ 44



Applying IBPG to solve NMF with

rlw = Hx UV|% + HRmxr(U) + HRLXH(V).

@ We choose the Frobenius norm for (6). We have Vyf = UVVT — XVT and
Vyf = UTUV — UT X, hence (6) is a projected gradient step.

@ IBPG should update U or V several times before updating the other one. This strategy
accelerates the algorithm compared to the pure cyclic update rule, see [5].

Choosing parameters

We have ng,m) = ng) e H (\7(/‘_1))7—\7("_1)”, and ng,m) e ng) = H (U(k))TU(k)H for m > 1.

F(k—1)
L’} and a(k o) — &ﬁfk’m), where

Wt—.\chooseﬂkm —1/Lk) '(km)—mm{ Tzlﬁ

=17 =11+ /1+472 ), 5=0.99 and & = 1.01.

The parameters satisfy the relaxing conditions for block-convex f and convex g;'s. IBPG for
NMF guarantees a subsequential convergence.

[5] N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix

factorization. Neural Computation, 24(4):10851105, 2012.
31/44



Applying IBP to solve NMF with s = 2r

nin 7||x ZU Vi3 + ZHRm(U )+ Z Tan (V;.).

i=r+1

Applying IBP:
@ We choose the Frobenius norm for (4). Equation (4) has the closed form solution

1 i—1 r
argminz 7||X — Z UgqVy — Z UqVeg: — U:iVi:H2
U;>0 2 et

q=i+1

1 o2
+ T,B,HU' - UZI||

XV — (U] + UiV, VT +1/8; U:;)
Vi: V,T + 1/51 ’
@ IBP should update the columns of U and the rows of V several times before doing so for
the other one.

= max (O,

Choosing parameters

We choose 1/,B(k '™ — 0.001 and a( m _ k) = min(3, y&k—1), with § =1, v = 1.01 and

a® = 0.6.

These parameters satisfy the global convergence conditions, hence IBP for NMF guarantees a

lobal convergence.
& & 32/44



Preliminary numerical results

We use the following notations for NMF algorithms:
@ IBP: this is our proposed IBP algorithm.
@ IBPG: this is our proposed IBPG algorithm when U and V are cyclically updated.
@ IBPG-A: this is our proposed IBPG algorithm when we update U several times before
updating V/, and vice versa.
@ iPALM: the inertial proximal alternating linearized minimization method proposed in [6].

A-HALS: the accelerated hierarchical alternating least squares algorithm in [7].

@ E-A-HALS: the acceleration version of A-HALS using extrapolation points proposed in [8].
This algorithm was experimentally shown to outperform A-HALS. This is, as far as we
know, one of the most efficient NMF algorithms. Note that E-A-HALS is a heuristic with
no convergence guarantees.

@ APGC: the accelerated proximal gradient coordinate descent method proposed in [9].

[6] T. Pock and S. Sabach. Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth
problems. SIAM Journal on Imaging Sciences, 9(4):1756-1787, 2016.

[7] N. Gillis and F. Glineur. Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix
factorization. Neural Computation, 24(4):1085-1105, 2012.

[8] A. M. S. Ang and N. Gillis. Accelerating nonnegative matrix factorization algorithms using extrapolation. Neural
Computation, 31(2):417-439, 2019.

[9] Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization with applications to

nonnegative tensor factorization and completion. SIAM Journal on Imaging Sciences, 6(3):1758-1789, 2013.
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We define relative errors

- s
F
X1l '

relerror, =

We let
@ enmin = 0 for the experiments with low-rank synthetic data sets, and

@ in the other experiments, eni, is the lowest relative error obtained by
any algorithms with any initializations

We define
E(k) = relerrory — emin.

34 /44



Low-rank synthetic data sets

@ Two low-rank matrices of size 200 x 200 and 200 x 500 are generated
by letting X = UV, where U and V are generated by MATLAB
commands rand(m,r) and rand(r, n) respectively, with r = 20.

@ For each matrix X, we run all algorithms with the same 50 random
initializations Wy = rand(m,r) and Vy = rand(r,n), and for each
initialization we run each algorithm for 20 seconds.

35/ 44



Low-rank synthetic data sets

%1073
10° % ] 45
’\ N —===AHALS ‘Illl —=== A-HALS
\ \-\\ —E_A-HALS 4 |l —EA-HALS | ]
A IBPG-A IBPG-A

Time (s.) Time (s.)

Figure: Average value of E(k) with respect to time on 2 random low-rank
matrices: 200 x 200 (left) and 200 x 500 (right).

36 /44



Low-rank synthetic data sets

To compare the accuracy of the solutions, we generate 80 random
low-rank m x n matrices, m and n are random integer numbers in the
interval [200,500]. For each X we run the algorithms for 20 seconds with 1
random initialization.

Table: Average, standard deviation and ranking of the value of E(k) at the last
iteration among the different runs on the low-rank synthetic data sets. The best
performance is highlighted in bold.

Algorithm mean =+ std ranking
A-HALS | 1.227107°+7.36510 7 (1,03, 4,7, 24, 41)
E-A-HALS | 8.501107* +6.882107* | (16, 10, 12, 13, 17, 3, 9)
IBPG-A | 5.03610 * +5.52210"* | (39, 10, 14, 10, 3, 2, 2)

IPG 1.200107%*4+7.38610"* | (0, 3,5,7, 15, 39, 11)
APGC 8.726107* £6.561107* | ( 3, 10, 14, 22, 18, 3, 10)
IBPG 6.621107* +6.371107* | (17, 17, 15, 11, 14, 2, 4)
iPALM 6.759107* £6.30210°* | (17,22, 13,12, 6,7, 3)
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Full-rank synthetic data sets

@ Two full-rank matrices of size 200 x 200 and 200 x 500 are generated
by MATLAB command X = rand(m, n). We take r = 20.

@ For each matrix X, we run all algorithms with the same 50 random
initializations Wy = rand(m, r) and Vy = rand(r,n), and for each
initialization we run each algorithm for 20 seconds.

38/ 44



Full-rank sy tic data sets

%10
i
SE
E
4.5;
£ 4"%
S
T sfl
I|_|_ 35 §
= ]
=z afi
S
o L
> 250y
=
X
5 10
Time (s.)

Time (s.)

Figure: Average value of E(k) with respect to time on 2 random full-rank
matrices: 200 x 200 (left) and 200 x 500 (right).
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Full-rank synthetic data sets

We then generate 80 full-rank matrices X = rand(m, n), with m and n
being random integer numbers in the interval [200,500]. For each matrix
X, we run the algorithms for 20 seconds with a single random initialization.

Table: Average, standard deviation and ranking of the value of E(k) at the last
iteration among the different runs on full-rank synthetic data sets. The best
performance is highlighted in bold.

Algorithm mean =+ std ranking
A-HALS 0.450056 +7.68810~° | (5, 17, 11, 10, 10, 11, 16)
E-A-HALS | 0.450055 4 7.684107° (13, 11, 8, 17, 8, 7, 16)
IBPG-A 0.450052 + 7.68210° (25,5,11,7,7,16,9)
IPG 0.450057 +7.68610° | (14, 14, 10, 10, 11, 16, 5)
APGC 0.450060 + 7.682107 (7,7, 18,12, 12, 9, 15)
IBPG 0.450062 +7.671107° | (13, 10, 10, 10, 18, 7, 12)
iPALM 0.450060 4 7.6831073 (4,15, 12,15, 15,12, 7)
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Experiments with real data sets

We test the algorithms on Urban and San Diego data sets. We choose the
rank r = 10. For each data set, we generate 35 random initializations and
for each initialization we run each algorithm for 200 seconds.

10!

IX-UVILAIXIL - e,
IX-UVILAIXIL - e,

20 10 60 80 00 120 140 160 180 200
Time (s.)

10 L L L
M0 160 180 200

0 2 0 6 s 100 120
Time (s.)

Figure: Average value of E(k) with respect to time on 2 hyperspectral images:
urban (the left) and SanDiego (the right).
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Dense hyperspectral images

Table: Average error, standard deviation and ranking among the different runs for
urban and SanDiego data sets.

Algorithm mean =+ std ranking

E-A-HALS | 0.018823 +6.739 10~* | (17, 28, 25)
IBPG-A | 0.018316 +9.745 10~ | (53, 15, 2)
APGC 0.018728 +-7.779 10~* | (0, 27, 43)
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More experiments on NMF and NCPD can be found in the supplementary
material of our paper.
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Thank you!
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