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OWL Regression

We consider the linear regression with Ordered Weighted L;-Norm
(OWL) [5, 11] as:

min P5(B) := *Hy Xﬁ\\ﬁz)\!ﬁ\ (1)

=1

where X € R™*? is the design matrix, y € R? is the measurement
vector, A is a non-negative vector of d non-increasing weights and

1B8l11) = [Blj2) > -+ - [B][q) are the ordered coefficients in absolute
value.

Note (1) is a general form of many learning problems:
P Lasso: Ay =g == Ay,
> L..-norm regression: A\;1 >0 and \g =--- = X3 =0,
» OSCAR [2]: \j = a1+ a(d—1i),i=1,2,--- ,d.



OWL Regression

> OWL Ball [12]:
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Figure: lllustration of OWL ball in R3 with different weights.

» Properties:
» simultaneously promote the sparsity and clustering without any
prior information,
P achieve the minimax estimation from the estimation side,
» control the false discovery rate from the testing side.



OWL Regression

Optimization Algorithms:

» Accelerated proximal gradient descent algorithm (APGD) [1],

o1 d
prox(y, A) = argmin 2|y ~ a3+ > Aol (2)
xER4 =1

» Stochastic proximal gradient descent algorithm with variance
reduction (SPGD) [10],

» Suffering high computation costs and memory burden in the
high-dimensional setting.



Screening Rules

Screening rules [4]: identify inactive features whose parameter
must be zeros at the optimum.

Optimality conditions for Lasso:
z 0" + Asign(f) =0, if B #0, (3)
@l 07| <A, W5 =0 (4)
Screening rules for Lasso:

2] 0" < A= B = 0. (5)



Motivation

» OWL regression suffers huge computational costs in practice,
» Sparsity is all around in OWL regression,
» Screening is widely used to accelerate the training of sparse

learning models such as SVM [6], Sparse SVM [9, 13], Lasso
[3], Sparse-group Lasso [7], Proximal Weighted Lasso [8].
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Screening Test

The dual of OWL regression:
1
max Dy(0) = — 5013~ 07y, (6)
st |XT0] 2 Mgy (7)

where )‘T(B) is the vector of )\T(ﬁi) and < means the conditions are
satisfied element-wisely.

The screening condition for each variable in OWL regression as:
|2 0% < Ay = B =0, (8)

where 0* is the optimum of the dual.



Screening Test

Challenges:

P Existing screening rules are limited to separable penalties while
OWL penalty is non-separable. Thus, all the hyperparameters
for each variable in OWL regression is unfixed,

» How to derive an efficient screening rule with the numerous
hyperparameters.

Objective: To screen as many variables whose coefficients should
be zero as possible by

» constructing a small and safe region for the left term of (8)
with the unknown dual optimum,

» exploring the unknown order structure for the right term of
(8) with the primal optimum.



Upper Bound for the Left Term

By the triangle inequality, we have:
T T
|z 07 < [z 0] + ||laa[]167 — 0], (9)

Suppose 6 and 6* are any feasible and the optimum of the dual
respectively, we have:

16— 6] < \/2G(5.6). (10)
where G(8,6) = P(B) — D(0) is the intermediate duality gap.

Hence, we can derive the screening test with the upper bound of
the left term as:

|2 0] + ||| V/2G (8, 6) < Arar)- (11)

The intermediate duality gap can be computed by 8 and 6.



lterative Strategy for the Screening Rule

We can do screening test first as:

[ 0] + ||zl /2G(8,0) < A = 5] = 0. (12)

Thus, we can partition the variables into an active set A of the
variables that cannot be removed and an inactive set A’ as the
complementary set of A.

Suppose A has m active features at iteration k, we can assign an
arbitrary permutation of d — m smallest parameters to the
screened coefficients. Thus, the order of these variables is known.
Then, we can derive the order of the new screened variables further
by doing screening test as:

2] 0] + ||| /2G(B,0) < Am = B; = 0. (13)

At each iteration, we repeat the screening test until A keeps
unchanged.



Safe Screening Rule with Iterative Strategy

Algorithm 1 Safe Screening Rule for OWL Regression with Iterative
Strategy
Input: A\, B, O, G(Bk, 0k), X.
1: while A still changes do
2: Do the screening test based on (13).
3: Update A.
4: end while
Output: New active set A.

Property:
The iterative screening rule we proposed is guaranteed to be safe
for Algorithm 1 and the whole training process of OWL regression.



Algorithms and Theoretical Analysis



Screening Rule in Proximal Gradient Algorithms

Algorithm 2 Accelerated Proximal Gradient Descent Algorithm with
Safe Screening Rules
Input: 5%, 6! =30ty = 1.
1: for k=1,2,--- do
2. Compute dual 6 and duality gap.
3:  Compute active set A based on Algorithm 1.
4 B% = prox, \(b* — X T(XDF —9)).
5 tger = 3(14/1+4t2).
6: bk—l—l — Bk + %(,@k . ,Bk_l).
7: end for
Output: Coefficient 5.




Screening Rule in Proximal Gradient Algorithms

Algorithm 3 Stochastic Proximal Gradient Descent Algorithm with
Safe Screening Rules

Input: 9, 1.
1: for k=1,2,--- do
2:  Compute dual 8 and duality gap.

3:  Compute active set A based on Algorithm 1.
4 P=p"10=VF(p),0' =5

5. fort=1,2,---,T do

6: Pick mini-batch I; C X of size [.
7w = (VI (BTN~ Vi (B)/+ b,

8: B' = prox, \ (BT —nuy).

9: end for

100 pk=pT.

11: end for

Output: Coefficient 5.




Complexity Analysis

» Suppose the active set size for iteration k is dj, the
complexity of screening rule is O(dy,).

» Algorithm 2 reduces the complexity O(d(n + logd)) required
by APGD to O(di(n + logdy)) for iteration k.

» Algorithm 3 reduces the complexity O(d(n + Tl + T'logd))
required by SPGD to O(dy(n + Tl + T logdy)) for main loop
k where T is inner loop size and [ is mini-batch size.

Hence, in high-dimensional sparse learning, the computation costs
of both APGD and SPGD are promising to be effectively reduced
by our screening rule.



Theoretical Analysis

In terms of the convergence, we have:

Property:

Iterative algorithm U with our screening rule to solve OWL
regression converges to the optimum if ¥ converges to the
optimum.

In terms of screening ability, we have:

Property:

0 converges to 0* of the dual if 3 converges to 3* of the primal.
Property:

Based on the optimality conditions, we have that final active set
A* satisfies that Z;giAg 2] 0%| = Ala+|- Then, as W converges, there

exists an iteration number Ky € N s.t. Vk > Ky, any variable
j ¢ A* is screened by our screening rule.



Experiments



Experiments

Table: The real-world datasets used in the experiments.

DATASET SAMPLE SIZE ATTRIBUTES
DUKE BREAST CANCER 44 7129
CoLoN CANCER 62 2000
CARDIAC LEFT 3360 1600
CARDIAC RIGHT 3360 1600
INDOORLOC LONGITUDE 21048 529

SLICE LOCALIZATION 53500 386




Experiments

The compared algorithms:
» APGD: Accelerated proximal gradient descent [1].

» APGD + Screening: Accelerated proximal gradient descent
with the safe screening rule.

» SPGD: Stochastic proximal gradient descent with variance
reduction we adopt in [10].

» SPGD + Screening: Stochastic proximal gradient method
with the safe screening rule.



Running Time
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Figure: Average running time of different algorithms without and with
safe screening rules under different settings.



Screening Rate

) eratons ) eratons ) eratons
os o o asl
A /
o os p o
o ot orl |
Sos fool gt
£os gl 7 £os
§ sour ] §
0 o} | 0
0 ol | 0
o ol | o
L J
S mm wm ww oW w0 oo o Tw  w m m m W S w @ % w e

(a) Colon Cancer

Figure: The screening rate

(b) Cardiac Right

of different datasets in the stochastic setting.

(c) Slice Localization



Experiments

Table: Prediction errors of different algorithms.

DATASET APGD APGD+SCREENING SPGD SPGD+SCREENING
DUKE BREAST CANCER 0.6523 0.6523 0.6523 0.6523
CoLON CANCER 0.9453 0.9453 0.9453 0.9453
CARDIAC LEFT 0.9453 0.9453 0.9453 0.9453
CARDIAC RIGHT 0.5276 0.5276 0.5276 0.5276
INpDOORLOC LoNGITUDE 0.5531 0.5531 0.5531 0.5531

SLicE LocaLizarion  0.6162 0.6162 0.6162 0.6162




Conclusion and Future Work

» \We propose the first safe screening rule for linear regression
with the family of OWL regularizers:

> We effectively explore the order structure of the primal solution
of the non-separable penalty via the iterative strategy,

» We prove that our screening rule can be safely applied to
existing optimization algorithms both in the batch and
stochastic setting without any loss of accuracy,

» The empirical performance shows the superiority of our
algorithms with significant computational gain.

» Future work:
» design faster algorithms to solve OWL models by avoiding
more useless updates,
» design safe screening rules for the models with nonconvex
non-separable penalties.
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