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Setup



Repeated Contextual Posted-Price Auctions

Different goods (e.g., ad spaces)

> described by d-dimensional feature vectors (contexts) from [0,1]¢
> are repeatedly offered for sale by a seller
> toasingle buyer over T rounds (one good per round).

The buyer

> holds a private fixed valuation function v: [0,1]¢ — [0,1]
> used to calculate his valuation v(x) for a good with context x € [0,1]¢,
> visunknown to the seller.

Ateachroundt =1, ..,T,

> afeature vector x; of the current good is observed by the seller and the buyer
> apricep; Is offered by the seller,
> and an allocation decision a; € {0,1} is made by the buyer:

a, = 0, when the buyer rejects, and a; = 1, whenthe buyer accepts.




Seller’s pricing algorithm and buyer strategy

The seller applies a pricing algorithm A that sets prices {p;};-1
in response to buyer decisions a = {a,;};_; and observed contexts x = {x;}:_.

The price p, can depend only on
> past decisions {ag}iZ7
> feature vectors {x }i_,

> thehorizonT



Strategic buyer

The seller announces her pricing algorithm A in advance

The buyer has some distribution (beliefs) D about future contexts.

N each rour

d t, given the history of previous rounds,

he chooses

nis decision a; S.t. it maximizes his future y-discounted surplus:
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The game’s workflow and knowledge structure
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Seller’s goal

The seller’s

We will lear
it is Lipschr

strategic regret:
SReg(T,A,v,y,x1.7,D): = Z=1 (v(xe) —a

N the function v in a non-parametric way. For tr

'7 (a standard requirement for non-parametric

0,
t ptpt)

1S, we Will assume that
earning):

Lip, ([0,1]¢) = {f:[0,1]* > [0,1] |vx,y € [0,1]*|f(x) = fF(3)| < Lllx — yII }

The seller seeks for a no-regret pricing for worst-case valuation function:

SupUELipL([O,l]d),xl:T,D SReg(T, A, U, )/, xl:T, D)

= o(T)

Optimality: the lowest possible upper bound for the regret of the form O(f(T)).
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Background

Kleinberg et al., FOCS52003]

[Amin et al., NIPS'2013]
' Drutsa, WWW™2017/]

'Mao et al., NIPS'2018]
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N truthful regret ®(loglog T).

Non-contextual setup (d = 0).

ne strategic setting is introduced.
A no-regret pricing for non-discount casey = 1.
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Horizon-independent optimal algorithm against
strategic buyer with regret ®(loglogT) fory < 1.
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Our non-parametric contextual setup (d > 0).
Horizon-dependent optimal algorithm against

d

myopic buyer (y = 0) with truthful regret ©(T a+1).



Research question

The key approaches of the non-contextual optimal algorithms ([pre]PRRFES)
cannot be directly applied to contextual algorithm of [Mao et al., NIPS'2018]

In order to search the valuation of the strategic buyer without context:

> Penalization rounds are used
> We do not propose prices below the ones that are earlier accepted

INn the approach of [Mao et al., NIPS2018]:

> Standard penalization does not help
> Proposed prices can be below the ones that are earlier accepted by the buyer

In this study, | overcome these issues and propose an optimal
non-parametric algorithm for the contextual setting with strategic buyer



Novel optimal algorithm



Penalized Exploiting Lipschitz Search (PELS)

PELS has three parameters:
> the price offsetn € [1, +o0)
> the degree of penalizationr € N
> theexploitationrate g:Z, - Z,

This algorithm keeps track of
> apartition X of the feature domain [0,1]¢
> initialized to [(4n + 6)L]% cubes (boxes) with side length I = 1/[(4n + 6)L]:
¥X={L, xL x--xI;|U,1,..,1;) € {[0,1],(21],..,(1—=11]}¢}



Penalized Exploiting Lipschitz Search (PELS)

Foreach box X € X, PELS also keeps track of:
> thelower bound u® € [0,1],
> the upper boundw? € [0,1],
> thedepthm?® € Z..
They are initialized as follows: u* = 0,w® =1,andm?® =0,X € X.

The workflow of the algorithm is organized independently in each box X € X.
> the algorithm receives a good with a feature vector x, € [0,1]¢
> findsthebox X € X inthe current partition X s.t. x; € X.

Then, the proposed price p; is determined only from the current state
associated with the box X, while the buyer decision a; is used
only to update the state associated with this box X.




Penalized Exploiting Lipschitz Search (PELS)

INn each box X € X, the algorithm iteratively offers exploration price:

u® + nLdiam(X)

If this price is accepted by the buyer:
> thelower bound u? isincreased by Ldiam(X).

If this price is rejected:

> the upper bound w? is decreased by (w* — u?) — 2(n + 1)Ldiam(X)

> 1 isoffered as apenalization price for r — 1 next rou
(if one of them is accepted, we continue offering 1 a

nds in this box X

| the remaining rounds).



Penalized Exploiting Lipschitz Search (PELS)

If, after an acceptance of an exploration price or after penalization rounds
we have (w? —u?) < (21 + 3)Ldiam(X),

then PELS:
> offers the exploitation p

rice u® for g(m?) next rounds in this box X

(buyer decisions made at them do not affect further pricing);

> bisects each side of the box X to obtain 2% boxes Xy = {X;, ..., X,a}
with €, -diameter equal to diam(X)/2;

> refines the partition Xy replacing the box X by the new boxes Xy.

These new boxes Xy

> inherit the state of the bounds u* and w? from the current state of X,
> whiletheirdepthm! =m* +1 VY € X,.



PELS is optimal

Theorem 1.
Letd = 1andy, € (0,1).

Then for the pricing algorithm PELS A with:

> the number of penalization roundsr > [logyo 1_y°]

> theexploitationrateg(m) =2, m e Z,,

> the price offsetn = 2/(1 — y,)

for any valuation function v € Lip,([0,1]%), discount y < y,, distribution D ana
feature vectors x4.7, the strategic regret is upper bounded:

1 d
SReg(T,A,v,y,x1.7,D) < C(NO(T + NO)d)d+1 = Q(Td+1),

C=2%2n+3+L1YH+1 and N, :=[(4n + 6)L]%.



PELS: main properties and extensions

> Can be applied against myopic buyer (y = 0) (setup of [Mao et al., NIPS'2018])

> PELS s horizon-independent (in contrast to [Mao et al., NIPS'2018])

What if the loss is symmetric?
> We can generalize the algorithm to classical online learning losses
> Forinstance, we want to optimize regret of the form Y1, |[v(x;) — p¢l

> But interacting with the strategic buyer still

d—1
> Slight modification of PELS hasregret O(T 4 ), whichistight ford > 1.
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