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Setup



Repeated Contextual Posted-Price Auctions
Different goods (e.g., ad spaces)

› described by 𝑑-dimensional feature vectors (contexts) from 0,1 %

› are repeatedly offered for sale by a seller 
› to a single buyer over 𝑇 rounds (one good per round). 

The buyer 
› holds a private fixed valuation function 𝑣: 0,1 % → 	 0,1
› used to calculate his valuation 𝑣(𝑥)	for a good with context 𝑥 ∈ 0,1 %, 
› 𝑣 is unknown to the seller.

At each round 𝑡 = 1,… , 𝑇, 
› a feature vector 𝑥2 of the current good is observed by the seller and the buyer
› a price 𝑝2 is offered by the seller, 
› and an allocation decision 𝑎2 ∈ {0,1} is made by the buyer:

𝑎2 = 0, when the buyer rejects,     and     𝑎2 = 1, when the buyer accepts.



Seller’s pricing algorithm and buyer strategy

The seller applies a pricing algorithm 𝐴	that sets prices {𝑝2}289:

in response to buyer decisions 𝐚 = {𝑎2}289: and observed contexts 𝐱 = {𝑥2}289: .

The price 𝑝2 can depend only on 

› past decisions {𝑎=}=892>9

› feature vectors {𝑥=}=892

› the horizon 𝑇



Strategic buyer

▌ The seller announces her pricing algorithm 𝐴 in advance

The buyer has some distribution (beliefs) 𝐷 about future contexts.

In each round 𝑡, given the history of previous rounds, 
he chooses his decision 𝑎2 s.t. it maximizes his future 𝛾-discounted surplus:

𝔼BC~E F 𝛾=>9𝑎=(𝑣(𝑥=) − 𝑝=)
:

=82
, 𝛾 ∈ (0,1]
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The game’s workflow and knowledge structure



Seller’s goal

The seller’s strategic regret:
SReg 𝑇, 𝐴, 𝑣, 𝛾, 𝑥9::, 𝐷 := ∑ 	(𝑣(𝑥2) − 𝑎2

RST𝑝2):
289

We will learn the function 𝑣 in a non-parametric way. For this, we will assume that 
it is Lipschitz (a standard requirement for non-parametric learning):

LipX 0,1 % ≔ 𝑓: 0,1 % → 	 0,1 	|∀𝑥, 𝑦 ∈ 0,1 % 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝐿 𝑥 − 𝑦 	

The seller seeks for a no-regret pricing for worst-case valuation function:

supb∈cdSe f,9 g ,Bh:i,ESReg 𝑇, 𝐴, 𝑣, 𝛾, 𝑥9::, 𝐷 = 𝑜 𝑇

Optimality: the lowest possible upper bound for the regret of the form 𝑂 𝑓(𝑇) .



Background &
Research question



Background
[Kleinberg et al., FOCS’2003] Non-contextual setup (𝑑 = 0).

Horizon-dependent optimal algorithm against 
myopic buyer (𝛾 = 0) with truthful regret Θ(log log 𝑇).

[Mao et al., NIPS’2018] Our non-parametric contextual setup (𝑑 > 0).
Horizon-dependent optimal algorithm against 

myopic buyer (𝛾 = 0) with truthful regret Θ(𝑇
g

gph).

[Drutsa, WWW’2017] Non-contextual setup (𝑑 = 0).
Horizon-independent optimal algorithm against 
strategic buyer with regret Θ(log log 𝑇) for 𝛾 < 1.

[Amin et al., NIPS’2013] Non-contextual setup (𝑑 = 0).
The strategic setting is introduced.
∄ no-regret pricing for non-discount case 𝛾 = 1.



Research question

The key approaches of the non-contextual optimal algorithms ([pre]PRRFES) 
cannot be directly applied to contextual algorithm of [Mao et al., NIPS’2018]

In order to search the valuation of the strategic buyer without context:

› Penalization rounds are used
› We do not propose prices below the ones that are earlier accepted

In the approach of [Mao et al., NIPS’2018]:

› Standard penalization does not help 
› Proposed prices can be below the ones that are earlier accepted by the buyer

▌ In this study, I overcome these issues and propose an optimal
▌ non-parametric algorithm for the contextual setting with strategic buyer



Novel optimal algorithm



Penalized Exploiting Lipschitz Search (PELS)

PELS has three parameters:
› the price offset 𝜂 ∈ 1,+∞
› the degree of penalization 𝑟 ∈ ℕ
› the exploitation rate 𝑔: ℤz → ℤz

This algorithm keeps track of 
› a partition 𝔛 of the feature domain 0,1 %

› initialized to 4𝜂 + 6 𝐿 % cubes (boxes) with side length 𝑙 = 1/ 4𝜂 + 6 𝐿 :
𝔛 = 𝐼9	×	𝐼J	×⋯	×	𝐼%	|	 𝐼9, 𝐼J, … , 𝐼% ∈ 		 0, 𝑙 , 𝑙, 2𝑙 , … , 1 − 𝑙, 1 % .



Penalized Exploiting Lipschitz Search (PELS)

For each box 𝑋 ∈ 𝔛, PELS also keeps track of:
› the lower bound 𝑢� ∈ [0,1], 
› the upper bound 𝑤� ∈ [0,1], 
› the depth 𝑚� ∈ ℤz.

They are initialized as follows: 𝑢� = 0, 𝑤� = 1, and 𝑚� = 0, 𝑋 ∈ 𝔛.

The workflow of the algorithm is organized independently in each box 𝑋 ∈ 𝔛. 
› the algorithm receives a good with a feature vector 𝑥2 ∈ 0,1 %

› finds the box 𝑋 ∈ 𝔛 in the current partition 𝔛 s.t. 𝑥2 ∈ 𝑋.
▌ Then, the proposed price 𝑝2 is determined only from the current state
▌ associated with the box 𝑋, while the buyer decision 𝑎2 is used 
▌ only to update the state associated with this box 𝑋.



Penalized Exploiting Lipschitz Search (PELS)

In each box 𝑋 ∈ 𝔛, the algorithm iteratively offers exploration price:
𝑢� + 𝜂𝐿diam(𝑋)

▌ If this price is accepted by the buyer:
› the lower bound 𝑢� is increased by 𝐿diam(𝑋).

▌ If this price is rejected:
› the upper bound 𝑤� is decreased by 𝑤� − 𝑢� − 2(𝜂 + 1)𝐿diam(𝑋)
› 1	is offered as a penalization price for 𝑟 − 1 next rounds in this box 𝑋

(if one of them is accepted, we continue offering 1 all the remaining rounds).



Penalized Exploiting Lipschitz Search (PELS)

▌ If, after an acceptance of an exploration price or after penalization rounds
we have 𝑤� − 𝑢� < (2𝜂 + 3)𝐿diam(𝑋), 

▌ then PELS: 
› offers the exploitation price 𝑢� for 𝑔(𝑚�) next rounds in this box 𝑋

(buyer decisions made at them do not affect further pricing);

› bisects each side of the box 𝑋 to obtain 2% boxes 𝔛� ≔ 𝑋9,… , 𝑋Jg
with ℓ�-diameter equal to diam(𝑋)/2;

› refines the partition 𝔛� replacing the box 𝑋 by the new boxes 𝔛�. 
These new boxes 𝔛�

› inherit the state of the bounds 𝑢�	and 𝑤� from the current state of 𝑋,
› while their depth 𝑚� = 𝑚� + 1				∀𝑌 ∈ 𝔛�.



PELS is optimal
Theorem 1.
Let 𝑑 ≥ 1 and 𝛾f ∈ 0,1 .
Then for the pricing algorithm PELS 𝐴with:

› the number of penalization rounds 𝑟 ≥ log��
9>��
J

› the exploitation rate 𝑔 𝑚 = 2�,𝑚 ∈ ℤz,

› the price offset 𝜂 ≥ 2/(1 − 𝛾f)
for any valuation function 𝑣 ∈ LipX 0,1 % , discount 𝛾 ≤ 𝛾f, distribution 𝐷	and 
feature vectors 𝑥9::, the strategic regret is upper bounded:

SReg 𝑇, 𝐴, 𝑣, 𝛾, 𝑥9::, 𝐷 ≤ 𝐶 𝑁f 𝑇 + 𝑁f %
9

%z9 = Θ(𝑇
%
%z9),

𝐶 ≔ 2%𝑟 2𝜂 + 3 + 𝐿>9 + 1 and   𝑁f ≔ 4𝜂 + 6 𝐿 %.



PELS: main properties and extensions

› Can be applied against myopic buyer (𝛾 = 0) (setup of [Mao et al., NIPS’2018])

› PELS is horizon-independent (in contrast to [Mao et al., NIPS’2018])

▌ What if the loss is symmetric?

› We can generalize the algorithm to classical online learning losses

› For instance, we want to optimize regret of the form ∑ 	|𝑣(𝑥2) − 𝑝2|:
289

› But interacting with the strategic buyer still

› Slight modification of PELS has regret 𝑂(𝑇
g�h
g ), which is tight for 𝑑 > 1.
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