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Preview
• Off-policy evaluation with density ratio learning


• Use the Perron-Frobenius theorem to reduce the 
constraints from 3 to 2, reducing the positiveness 
constraint, making the problem convex in both tabular 
and linear setting


• A special weighted  norm


• Improvements over DualDICE and GenDICE in tabular, 
linear and neural network settings

L2



Off-policy evaluation is to estimate the 
performance of a policy with off-policy data

• The target policy 


• A data set 


• 


• The performance metric 


• 


•

π

{si, ai, ri, s′ i}i=1,…,N

si, ai ∼ dμ(s, a), ri = r(si, ai), s′ i ∼ p( ⋅ |si, ai)

ργ(π) ≐ ∑s,a dγ(s, a)r(s, a)

dγ(s, a) ≐ (1 − γ)∑∞
t=0 γt Pr(St = s, At = a ∣ π, p) (γ < 1)

dγ(s, a) ≐ limt→∞ Pr(St = s, At = a ∣ π, p) (γ = 1)



Density ratio learning is promising for 
off-policy evaluation (Liu et al, 2018)

• Learn  with function approximation 


•

τ*(s, a) ≐
dγ(s, a)

dμ(s, a)

ργ(π) = ∑s,a dμ(s, a)τ*(s, a)r(s, a) ≈ 1
N ∑N

i=1 τ*(si, ai)ri



Density ratio satisfies a Bellman-
like equation (Zhang et al, 2020)
• 


• 


• 


• 


•

Dτ* = (1 − γ)μ0 + γP⊤
π Dτ*

D ∈ ℝNsa×Nsa, D ≐ diag(dμ)

τ* ∈ ℝNsa

μ0 ∈ ℝNsa, μ0(s, a) ≐ μ0(s)π(a |s)

Pπ ∈ ℝNsa×Nsa, Pπ((s, a), (s′ , a′ )) ≐ p(s′ |s, a)π(a′ |s′ )



 is easy as it implies a 
unique solution

γ < 1

• 


•  exists

Dτ = (1 − γ)μ0 + γP⊤
π Dτ

(I − γP⊤
π )−1



Previous work requires three 
constraints for γ = 1

1. 


2. 


3.

Dτ = P⊤
π Dτ

Dτ ≻ 0

1⊤Dτ = 1

GenDICE (Zhang et al, 2020) considers 1 & 3 explicitly 
  

and implements 2 with positive function approximation (e.g. ),  
projected SGD,  or stochastic mirror descent 

Mousavi et al. (2020) implements 3 with self-normalization 
over all state-action pairs

L(τ) ≐ divergence(Dτ, P⊤
π Dτ) + (1 − 1⊤Dτ)2

τ2, eτ



Previous work requires three 
constraints for γ = 1

1. 


2. 


3.

Dτ = P⊤
π Dτ

Dτ ≻ 0

1⊤Dτ = 1
The objective becomes non-convex with positive function approximation or 
self-normalization, even in tabular or linear setting. 

Projected SGD is computationally infeasible. 

Stochastic mirror descent significantly reduces the capacity  
of the (linear) function class.



We actually need only two 
constraints!

1. 


2. 


3.

Dτ = P⊤
π Dτ

Dτ ≻ 0

1⊤Dτ = 1

Perron-Frobenius theorem: the solution space of 1 is one-dimensional 
Either 2 or 3 is enough to guarantee a unique solution



GradientDICE considers a 
special  norm for the lossL2

• GenDICE:  
  

 


• 


• GradientTD loss: 

L(τ) ≐ divergence((1 − γ)μ0 + γP⊤
π Dτ, Dτ) + (1 − 1⊤Dτ)2

subject to Dy ≻ 0

L(τ) ≐ | | (1 − γ)μ0 + γP⊤
π Dτ − Dτ | |D−1 + (1 − 1⊤Dτ)2

| |… | |D



GradientDICE considers a 
special  norm for the lossL2

• 


•




• Convergence in both tabular and linear setting with 

L(τ) ≐ | | (1 − γ)μ0 + γP⊤
π Dτ − Dτ | |D−1 + (1 − 1⊤Dτ)2

min
τ∈ℝNsa

max
f∈ℝNsa,η∈ℝ

L(τ, η, f ) ≐ (1 − γ)𝔼μ0
[ f(s, a)]

+γ𝔼p[τ(s, a)f(s′ , a′ )]
−𝔼dμ

[τ(s, a)f(s, a)]

−
1
2

𝔼dμ
[ f(s, a)2]

+λ(𝔼dμ
[ητ(s, a) − η]− η2

2 )
γ ∈ [0,1]



GradientDICE outperforms 
baselines in Boyan’s Chain (Tabular)

• 30 runs (mean + standard errors)


• Grid Search for hyperparameters, e.g., 
learning rates from 


• Tuned to minimize final prediction error

{4−6,4−5, …,4−1}



GradientDICE outperforms 
baselines in Boyan’s Chain (Linear)

• 30 runs (mean + standard errors)


• Grid Search for hyperparameters, e.g., 
learning rates from 


• Tuned to minimize final prediction error

{4−6,4−5, …,4−1}



GradientDICE outperforms 
baselines in Reacher-v2 (Network)

• 30 runs (mean + standard errors)


• Grid Search for hyperparameters, e.g., 
Learning rates from  
Penalty from 


• Tuned to minimize final prediction error

{0.01,0.005,0.001}
{0.1,1}



Thanks
• Code and Dockerfile are available at  

https://github.com/ShangtongZhang/DeepRL

https://github.com/ShangtongZhang/DeepRL
https://github.com/ShangtongZhang/DeepRL

