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Epidemic Control

A DM iteratively:

1. Pick a measure to contain the virus.

2. See the corresponding outcome.

Goal: Minimize the total infected cases.
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Epidemic Control

A DM iteratively:

1. Pick a measure to contain the virus.
2. See the corresponding outcome.

Goal: Minimize the total infected cases.

Challenges:

» Uncertainty: effectiveness of each measure is unknown.

» Bandit feedback: no feedback for un-chosen measures.

» Non-stationarity: virus might mutate throughout.
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Epidemic Control

The DM's action could have long-term impact.

» Quarantine lockdown stem the spread of virus to elsewhere,
but also delayed key supplies from getting in.

Q_Search Bloomberg

Prognosis

China Sacrifices a Province to Save the
World From Coronavirus

Bloomberg News
February 5, 2020, 11:01 AM EST

» Hubei province has seen 97% of all deaths from the virus

» Quarantine lockdown delayed key supplies from getting in
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Model

Model epidemic control by a Markov decision process (MDP)
(Nowzari et al. 15, Kiss et al. 17).

State 1 State 2
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Model

Model epidemic control by a Markov decision process (MDP)
(Nowzari et al. 15, Kiss et al. 17).

State 1 State 2

For each timestept=1,..., T,

» Observe the current state s; = {1,2}, and receive a reward.
For example

r(1)=1and r(2) =0.

» Pick an action a; € {B, G}, and transition to the next state
St41 pt("St, at) (unknown).
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Model cont'd

0.8

0.5

State 1 State 2

» Task: Design a reward-maximizing policy .
For every time step t : e {1,2} - {B, G}
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» Task: Design a reward-maximizing policy .

For every time step t :

w2 {1,2} = {B,G}

» Dynamic regret (Besbes et al. 15):

dymeregr = E | L rlse( 7 )| —E[SL r(se(m)]

knows p;'s
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Model cont'd

0.8

State 1

0.5

State 2

» Task: Design a reward-maximizing policy .

For every time step t :

w2 {1,2} = {B,G}

» Dynamic regret (Besbes et al. 15):

dymeregr = E | L rlse( 7 )| —E[SL r(se(m)]

knows p;'s

» Variation budget:

Py = p2ll + lp2 = p3ll + - .. + [lpT—1 — p7[| < Bp.
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Diameter of a MDP cont'd

» If the DM leaves state 1, she has to come back to state 1 to
collect samples.

6/18



Diameter of a MDP cont'd

» If the DM leaves state 1, she has to come back to state 1 to
collect samples.

» The longer it takes to commute between states, the harder
the learning process.

6/18



Diameter of a MDP cont'd

» If the DM leaves state 1, she has to come back to state 1 to
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Diameter of a MDP cont'd

» If the DM leaves state 1, she has to come back to state 1 to
collect samples.

» The longer it takes to commute between states, the harder
the learning process.

Definition ((Jaksch et al. 10) Informal)
Diameter = max{E[min. time(1 — 2)], E[min. time(2 — 1)]}

Example. Diameter = max{1/0.8,1/0.1} = 10.
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Existing Works

Stationary Non-stationary
Multi-armed bandit OFU* Forgetting + OFU7Y
Reinforcement learning OFU: ? (Forgetting + OFU)

* Auer et al. 03
TBesbes et al. 14, Cheung et al. 19
TJaksch et al. 10, Agrawal and Jia 20
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UCB for Stationary RL

1. Suppose at time t,

Ne(1,B)=10: 5 x (1,B) =1, 5 x (1,B) =2

8/18



UCB for Stationary RL

1. Suppose at time t,
N¢(1,B)=10: 5 x (1,B)—1, 5 x (1,B) =2

Ne(2,B)=10: 5 x (2,B) =1, 5 x (2,B) =2

8/18



UCB for Stationary RL

1. Suppose at time t,
N¢(1,B)=10: 5 x (1,B)—1, 5 x (1,B) =2
Ne(2,B)=10: 5 x (2,B)—1, 5 x (2,B)—2

Empirical state transition distribution:

0.5
Pt

8/18



UCB for Stationary RL

1. Suppose at time t,
N¢(1,B)=10: 5 x (1,B)—1, 5 x (1,B) =2
Ne(2,B)=10: 5 x (2,B)—1, 5 x (2,B)—2

Empirical state transition distribution:

0.5
Pt

2. Confidence intervals:
18:(-11, B) — p(-[1, B)|| < (1, B) := C/v/10
18:(-12, B) = p(-[2, B)|| < (2, B) := C/v/10
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UCB for Stationary RL

3. UCB of reward: find the p that maximizes Pr(visiting state 1)
within the confidence interval.

0.5+C/V10
% 0.5-C/V10
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UCB for Stationary RL

3. UCB of reward: find the p that maximizes Pr(visiting state 1)
within the confidence interval.

0.5+C/V10
% 05-C/V10

4. Execute the optimal policy w.r.t. the UCB until some
termination criteria are met.
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UCB for RL cont'd

Regret analysis:

» LCB of diameter: find the p that maximizes Pr(commuting)
within the confidence interval.
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UCB for RL cont'd

Regret analysis:

» LCB of diameter: find the p that maximizes Pr(commuting)
within the confidence interval.

E 0.5+C/V10 ;

» Regret o« LCB x (Z(s@) ce(s, a)).

» Under stationarity, LCB of diameter < Diameter(p).

Theorem
Denote D := Diameter(p), the regret of the UCB algorithm is

O(DVT).

» Summary: UCB of reward 4+ LCB of diameter = low regret.
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SWUCB for RL

S s D e R

1 t-3 -1t t’-3 t-1 t T

According to (Cheung et al. 19):
» SWUCB for RL: UCB for RL with W most recent samples.
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SWUCB for RL

S s D e R

1 t-3 -1t t’-3 t-1 t T

According to (Cheung et al. 19):

» SWUCB for RL: UCB for RL with W most recent samples.

» The perils of drift: Under non-stationarity,
LCB of diameter > Diameter(ps)

for all s € [T].
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Perils of Non-Stationarity in RL

Non-stationarity: The DM faces time-varying environment.

G—0 o0&
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Non-stationarity: The DM faces time-varying environment.

1 2 . f
p P
Bandit feedback: The DM is not seeing everything.

@ o o &

p
Collected data: {(1,B) — 1, (2,B) — 2}
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Non-stationarity: The DM faces time-varying environment.

G—0 o0&

Bandit feedback: The DM is not seeing everything.
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p
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Perils of Non-Stationarity in RL

Non-stationarity: The DM faces time-varying environment.

G—0 o0&

Bandit feedback: The DM is not seeing everything.

@ o o &

p
Collected data: {(1,B) — 1, (2,B) — 2}

Empirical state transition j;:

S 2

Diameter explodes!

12/18



Perils of Non-Stationarity in RL

But let’s still check the “LCB” of diameter:

c(1, B)

ct(2, B)
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%‘ (1, B) (5)
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» This caveat stems from the estimation.
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» Confidence widening: increase each confidence interval by 7.
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Confidence Widening
» This caveat stems from the estimation.
» We can refine the design principle of UCB.

» Confidence widening: increase each confidence interval by 7.
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ct(2,B) ce(2,B)+ 17
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Confidence Widening
» This caveat stems from the estimation.
» We can refine the design principle of UCB.

» Confidence widening: increase each confidence interval by 7.

(1, B) c:(1,B) + 1)
C——& =

ct(2,B) ce(2,B)+ 17

» ¢ > 0 = Pr(commuting) > 7
<l-n <1l-7

G’

> New “LCB" < 1/1.

Y
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Confidence Widening
Recall: Regret oc LCB x[3_(, ;) (ce(s, a) + n)]-
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Confidence Widening
Recall: Regret oc LCB x[3_(, ;) (ce(s, a) + n)]-
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The Blessing of More Optimism

Confidence widening ensures either we enjoy reasonable upper
bound for LCB or we consume 7) of variation budget.
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The Blessing of More Optimism

Confidence widening ensures either we enjoy reasonable upper
bound for LCB or we consume 7) of variation budget.

Theorem

If we choose the optimal W and n) w.r.t. By, the dynamic regret
bound for the SWUCB-CW algorithm is

&2 1 3
o) (DmaxB,;‘ T4> .
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Conclusion

Stationary Non-stationary
MAB OFU OFU + Forgetting
RL OFU Extra optimism + Forgetting

» An unfavorable “phase transition” from MAB (1 state) to RL

(> 2 states) for SWUCB.

» Blessing of more optimism: Provably low dynamic regret

for non-stationary RL.

» Parameter-free: Bandit-over-reinforcement learning (Cheung

et al. 20).
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Thank You!

rzhu@mit.edu

isecwc@nus.edu.sg, dslevi@mit.edu
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