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Aim

Improve the efficiency of Neural Architecture Search (NAS) via learning a
Proxy Validation Loss Landscape (PVLL) with historical validation results.
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The Bi-level Setting of NAS

Bi-level

min
A

L(Dvalid;w
⇤
(A),A),

s.t. w
⇤
(A) = argmax

w
L(Dtrain;w,A).

Search and evaluation:

min
A

L(Dvalid;w
⇤
(H̃), H̃),

s.t. w
⇤
(H̃) = argmax

w
L(Dtrain;w, H̃),

H̃ = GumbelSoftmax(A; ⇠, ⌧).
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• The bi-level optimization is solved iteratively;
• When 𝜶 is updated, 𝒘∗(𝜶) also changes;
• 𝒘 needs to be updated towards 𝒘∗(𝜶), and 𝜶 is evaluated again;
• In this process, intermediate validation results are used once and discarded.



Make Use of Historical Validation Results

Approach: learn a PVLL with them
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PVLL-NAS

Advantages:
• Learning a Proxy Validation Loss Landscape (PVLL) with

historical validation results;

• Sampling new architectures from the PVLL for further
evaluation and update;

• Efficient architecture search with gradients of the PVLL.
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Methodology
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Search Space

hc-2 hc-1 x(0) x(1) x(�) x(�) hc
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A micro search space: the NASNet search space
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1 Introduction

Theorem 1. Let  be a hypothesis class containing all the possible hypothesises
of estimator  . For any � > 0, with probability at lest 1� �, 8 2  :

|LT ( )� L( )| <

s
2
�
d+ ln 2

�

�

T
,

where d is the Pollard’s pseudo-dimension of  .

Theorem 2. With probability at least 1� �, to learn an estimator  with error
bound ✏ 

p
(8/N)(d+ ln(2/�)), the number of labels requested by the algorithm

is at most the order of

O

⇣p
N(d+ ln (2/�))

⌘
.

I(j) =
X

i<j

oi,j(I
(i)), for i = 2, 3, 4, 5.
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Search Space:

I
(j)

=

X

i<j

oi,j(I
(i)
), for i = 2, 3, 4, 5.

Operation candidates:

oi,j 2 O, |O| = K.

Sampler:

h̃
(k)

i,j =
exp ((a

(k)
i,j + ⇠

(k)
i,j )/⌧)

PK
k0=1 exp ((a

(k0)
i,j + ⇠

(k0)
i,j )/⌧)

,

Sum:

I
(j)

⇡

X

i<j

h̃
(k)

i,j · O
(k)

(I
(i)
)

where k = argmaxk h̃
(k)

i,j .
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Operation Candidates

• 3 × 3 separable convolution;
• 5 × 5 separable convolution;
• 3 × 3 dilated separable convolution;
• 5 × 5 dilated separable convolution;

• 3 × 3 max pooling;
• 3 × 3 average pooling;
• Identity (i.e. skip-connection);
• Zero (i.e. not connected).
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We use 𝐾 = 8:



Select Operations
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Calculate architecture parameters with Gumbel-Softmax:

Sample operations with argmax:



Evaluate Architectures
Bi-level

min
A

L(Dvalid;w
⇤
(A),A),

s.t. w
⇤
(A) = argmax

w
L(Dtrain;w,A).

Search and evaluation:

min
A

L(Dvalid;w
⇤
(H̃), H̃),

s.t. w
⇤
(H̃) = argmax

w
L(Dtrain;w, H̃),

H̃ = GumbelSoftmax(A; ⇠, ⌧).
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Proxy Validation Loss Landscape

The PVLL is learned by learning a mapping 𝜓: &𝑯 → )ℒ ;
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The validation loss estimator is optimized with a weighted
mean squared error (MSE) loss function:

min
 

LT ( ) =
1

T

TX

t=1

1

pt

⇣
 (H̃t)� Lt

⌘2
. (8)

where T is the total time step and Lt is the real validation
loss of H̃t evaluated in the super-network. We introduce
pt as a weight of Ht to stabilize the training of  . pt is
defined as pt =  

⇤
t (H̃t) �  

⇤
t (H̃t�1), where  ⇤

t is the
optimal validation loss estimator at time step t. Note that if
H̃t is far from H̃t�1, we assign a smaller weight 1/pt to
H̃t, so that the significant perturbation of the architecture
will not influence the optimization of the validation loss
estimator too much. All the pairs of sampled architecture
and its real validation loss evaluated in the super-network
are stored in a memory M , i.e. M = {(H̃t,Lt), 81 
t  T}. After each sampling, memory M is updated by
M = M [ {(H̃t,Lt)}.

Via minimizing Eq. 8, we can obtain the optimal validation
loss estimator  ⇤

T at time step T . By replacing the validation
loss in Eq. 6 with the optimal validation loss estimator  ⇤

T ,
we can reformulate the bi-level optimization problem into a
simpler formula:

min
A

 
⇤
T (H̃)

s.t. H̃ = GumbelSoftmax(A; ⇠, ⌧),
(9)

where the lower level optimization problem is bypassed with
the estimator. The major difference between Eq. 9 and Eq. 6
is that w⇤ is no longer involved in the searching process. In
this way, we do not need to solve the bi-level optimization
anymore, but only need to learn an estimator and use it to
search for architectures.

We use the gradient of the proxy loss rA (H̃) to update
the architecture parameter for both searching and sampling.
At a time step t, starting from an architecture parameter
A with corresponding H̃ , updating is conducted along the
gradient direction induced by estimator  ⇤

t with ⌘ as the
step size:

A
0
 A� ⌘ ·rA 

⇤
t (H̃), (10)

where A
0 is the new architecture parameter. With appro-

priate step size, A0 should satisfy that the estimated val-
idation loss of it  ⇤

t (A
0)   

⇤
t (A). The next architec-

ture to evaluate is therefore obtained according to A
0 by

H̃
0
= GumbelSoftmax(A0; ⇠0, ⌧). The memory M is

then updated to M = M [ {(H̃
0
,L

0)}.

3.4. Search Procedure

The overall procedure of our framework is shown in Algo-
rithm 1. Firstly, we randomly initialize a warm-up popu-
lation H of size N and use architecture Hi 2 H to warm

Algorithm 1 Loss Space Regression
1: Initialize a warm-up population:

P = {H̃i|i = 1, ..., N}

2: for each H̃i 2 P do

3: Warm-up architecture H̃i for 1 epoch
4: end for

5: Initialize a performance memory M = ;
6: for each H̃i 2 P do

7: Train architecture H̃i for 1 epoch
8: Evaluate architecture H̃i’s loss Li

9: Set M = M [ {(H̃i,Li)}
10: end for

11: Warm-up  with M

12: for t = 1! T do

13: Sample an architecture as in Eq. 4 with H̃t:
H̃t = GumbelSoftmax(At; ⇠t, ⌧)

14: Optimize network with loss in Eq. 5
15: Evaluate architecture to obtain loss Lt

16: Set M = M [ {(H̃t,Lt)}
17: Update  with Eq. 8
18: Update At to At+1 with Eq. 10
19: end for

up the target super-network f . The validation loss of Hi

after network warm-up along with the architecture itself is
then saved to a memory M as architecture-performance
pair, which is used to warm up and train the validation loss
estimator  . The purpose of warm-up is to let the valida-
tion loss estimator equipped with prior knowledge about the
validation loss landscape before the searching conducts.

When the target network f and validation loss estimator  
are both warmed up, the search commences. In each epoch
of the search stage, we sample an architecture weight H̃t

according to the current architecture parameter At as in
Eq. 4, and then update the corresponding sub-graph in the
super network. The sub-graph is then evaluated to obtain
a validation loss for validation loss estimator training. The
architecture parameter At is then updated with the estimated
loss with Eq. 10 for the subsequent sampling.

4. Theoretical Analysis

In this section, we apply theoretical analysis to demonstrate
our method that trains validation loss estimator with archi-
tectures sampled by Eq. 10 is consistent and has a lower
label complexity compared to a baseline method that sam-
ples architectures following a uniform distribution.

4.1. The Algorithm Consistency

A desirable feature of our method is that with large enough
total step T , Eq. 9 can finally output a validation loss es-
timator  T whose loss is at most L⇤ + ✏, where L

⇤ is the



Proxy Validation Loss Landscape
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The PVLL is learned with a memory 𝑀, such that

After each sampling, the memory 𝑀 is updated by:
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Eq. 4, and then update the corresponding sub-graph in the
super network. The sub-graph is then evaluated to obtain
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The next architecture is determined by the current architecture 𝐴 and
its gradients in the PVLL:

where 𝐴′ is the next architecture and 𝜂 is a learning rate.



Overall Algorithm
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up the target super-network f . The validation loss of Hi

after network warm-up along with the architecture itself is
then saved to a memory M as architecture-performance
pair, which is used to warm up and train the validation loss
estimator  . The purpose of warm-up is to let the valida-
tion loss estimator equipped with prior knowledge about the
validation loss landscape before the searching conducts.

When the target network f and validation loss estimator  
are both warmed up, the search commences. In each epoch
of the search stage, we sample an architecture weight H̃t

according to the current architecture parameter At as in
Eq. 4, and then update the corresponding sub-graph in the
super network. The sub-graph is then evaluated to obtain
a validation loss for validation loss estimator training. The
architecture parameter At is then updated with the estimated
loss with Eq. 10 for the subsequent sampling.

4. Theoretical Analysis

In this section, we apply theoretical analysis to demonstrate
our method that trains validation loss estimator with archi-
tectures sampled by Eq. 10 is consistent and has a lower
label complexity compared to a baseline method that sam-
ples architectures following a uniform distribution.

4.1. The Algorithm Consistency

A desirable feature of our method is that with large enough
total step T , Eq. 9 can finally output a validation loss es-
timator  T whose loss is at most L⇤ + ✏, where L

⇤ is the



Theoretical Analysis
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Theoretical Analysis

•The algorithm consistency;
•The label complexity.
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Consistency of PVLL
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Search and Evaluate 
on CIFAR-10
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We search for architectures on
CIFAR-10. Firstly, 100 random
architectures are sampled for
the warm-up of PVLL. Then, we
search for 100 steps in the
PVLL.
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5.1. Search and Evaluation on CIFAR-10

Following previous works (Liu et al., 2018b; Dong & Yang,
2019), we use the CIFAR-10 dataset (Krizhevsky et al.,
2009) for architecture searching and results evaluation. The
CIFAR-10 dataset contains 50,000 training images together
with 10,000 testing images from 10 classes. During the
searching phase, we shuffle the training set and divide it
into two parts with equal size for model weights training
and validation performance inference respectively.

In our framework, operation candidates are formed in a
ReLU-Conv-BN pattern. We set candidates number K = 8,
including 4 convolutional operations: 3⇥3 separable convo-
lutions, 5⇥5 separable convolutions, 3⇥3 dilated separable
convolutions and 5 ⇥ 5 dilated separable convolutions, 2
pooling operations: 3⇥ 3 average pooling and 3⇥ 3 max
pooling, and two special operations: an identity operation
representing skip-connection and a zero operation represent-
ing two nodes are not connected.

The super-network for searching is constructed by stacking
8 cells. Cells locate at the 1/3 and 2/3 of the network (in
this case, the 3rd and 6th cells) are set as reduction cells,
while others are normal cells. The network has 16 initial
channels, which are doubled after each reduction cell. After
the searching, a large-scale network is constructed following
the pattern of obtained architecture and retrained with the
whole training set.

We follow the search procedure in Section 3.4. The warm-up
population is initialized with 100 random sampled architec-
tures. The performance memory is a queue with a maximum
length of 100, which is just equal to the size of the warm-up
population. In this way, the first sampled architecture can
survive until the warm-up stage finish, and as the search pro-
gresses, the warm-up population will be forgotten gradually.
This setting also ensures that the estimator is always trained
with an equal number of samples.

We trained models in the warm-up population with mini-
batch gradient descent, whose batch size is set to 64 and
the base learning rate is set to 0.025. The learning rate is
gradually reduced with cosine annealing. The architecture
weights and validation loss estimator are both optimized by
Adam with a constant learning rate of 0.1. The Softmax
temperature ⌧ in Gumbel-Softmax is set to 0.1. To evalu-
ate the performance of the obtained architecture, a larger
network is constructed with 20 stacked cells and 36 initial
channels. The network is trained with the same training
setting as in the searching phase for 600 epochs on the
complete CIFAR-10 training set.

The corresponding test results on CIFAR-10 is shown in Ta-
ble 1 to compare with both hand-crafted and NAS searched
state-of-the-art architectures. As for our method, PVLL-
NAS outperforms all previous methods with similar param-

Model GPUs Time
(Days)

Params
(M)

Test Error
(%)

ResNet-110 - - 1.7 6.61
DenseNet-BC - - 25.6 3.46
MetaQNN 10 8-10 11.2 6.92
NAS 800 21-28 7.1 4.47
NAS+more filters 800 21-28 37.4 3.65
ENAS 1 0.32 21.3 4.23
ENAS+more channels 1 0.32 38.0 3.87
NASNet-A 450 3-4 3.3 3.41
NASNet-A+cutout 450 3-4 3.3 2.65
ENAS 1 0.45 4.6 3.54
ENAS+cutout 1 0.45 4.6 2.89
DARTS(1st)+cutout 1 1.50 3.3 3.00
DARTS(2nd)+cutout 1 4 3.3 2.76
NAONet+cutout 200 1 128 2.11
NAONet+WS 1 0.30 2.5 3.53
GDAS 1 0.21 3.4 3.87
GDAS+cutout 1 0.21 3.4 2.93
PVLL-NAS 1 0.20 3.3 2.70

Table 1. Comparison of PVLL-NAS with different state-of-the-art
CNN models on CIFAR-10 dataset.

Figure 2. Best normal (the upper one) and reduction (the lower
one) cells found on CIFAR-10
eter numbers and achieves the fastest searching speed, as
shown in Table 1. After searching for 0.2 GPU day, our
algorithm achieves better trade-offs between error rate and
parameters, which reaches 2.70% error rate on CIFAR-10
with 3.3M parameters. The architecture searched by PVLL-
NAS is illustrated in Fig. 2.

Comparing to NAO (Luo et al., 2018), the gradient of the
validation loss estimator is employed to determine archi-
tectures to be evaluated. Such a sampling strategy is more
specific and architecture been sampled can contribute more
to the training of validation loss estimator. We can thus
learn a competitive proxy validation loss landscape with
fewer samples and hence fewer search time. Comparing
to GDAS (Dong & Yang, 2019), we search architectures
with the proxy validation loss landscape, which includes
knowledge from all previous evaluations, instead of only
using the current gradient information to update the archi-
tecture parameter. Therefore we can achieve better results
with equivalent searching time.

5.2. Generality on ImageNet

The generality of architecture we obtained is tested on Ima-
geNet 2012 (Russakovsky et al., 2015). ImageNet 2012 is



Generalize to 
ImageNet
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Architectures found on CIFAR-
10 is generalized to ImageNet
for evaluation. Evaluation on
ImageNet follows the mobile
setting, i.e. no more than 600
multi-add operations.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Neural Architecture Search in a Proxy Validation Loss Landscape

Model GPUs Time
(Days)

Params
(M)

+⇥

(M)
Test Error (%)
Top-1 Top-5

Inception-V1 - - 6.6 1448 30.2 10.1
MobileNet-V2 - - 3.4 300 28.0 -
ShuffleNet - - ⇠ 5 524 26.3 -
Progressive NAS 100 1.5 5.1 588 25.8 8.1
NASNet-A 450 3-4 5.3 564 26.0 8.4
NASNet-B 450 3-4 5.3 488 27.2 8.7
NASNet-C 450 3-4 4.9 558 27.5 9.0
AmoebaNet-A 450 7 5.1 555 25.5 8.0
AmoebaNet-B 450 7 5.3 555 26.0 8.5
AmoebaNet-C 450 7 6.4 570 24.3 7.6
DARTS 1 4 4.9 595 26.7 8.7
GDAS 1 0.21 5.3 581 26.0 8.5
PVLL-NAS 1 0.20 4.8 532 25.6 8.1

Table 2. Top-1 and top-5 error rates of PVLL-NAS and other state-
of-the-art cnn models on ImageNet dataset.
a large-scale dataset containing 1.3 million training images
and 50,000 testing images in 10,000 categories. The training
images in it is 26 times that of CIFAR-10, and its classes
are 100 times that of CIFAR-10, which makes it a common
dataset for testing the generality of architectures in NAS
studies. We follow the mobile setting (Sandler et al., 2018)
for ImageNet, where the input size is fixed to 224⇥224 with
3 channels and the number of multiply-add operations is re-
stricted to be less than 600M. We set other hyper-parameters
following (Dong & Yang, 2019; Liu et al., 2018b; Xu et al.,
2019). The constructed model contains 14 layers with 48
initial channels.

We compare our results with other NAS algorithms in Table
2. PVLL-NAS outperforms all other gradient-based NAS
algorithms, including DARTS and GDAS, which reaches
25.6% error rate on ImageNet with 4.8M parameters. Com-
pared with other baselines, our algorithm achieves com-
petitive performance, which demonstrates the efficiency of
PVLL-NAS. Consistently, PVLL-NAS achieves better trade-
offs on both CIFAR-10 and ImageNet, which highlights the
generality of our algorithm.

5.3. The First and Second Order Estimation

We argue that optimize the architecture parameter with the
architecture gradient estimated with the proxy validation
loss landscape is reasonable, and the effect of this estima-
tion is competitive comparing to other estimation methods.
To demonstrate that, we design an experiment following
the concept of the 2nd order approximation in DARTS (Liu
et al., 2018b). The 2nd order approximation of architecture
gradient in DARTS is to approximate the optimal model
weight w⇤ by a single training step and compute architec-
ture gradient based on the approximated model weight w0.
A counterpart of the 2nd order approximation in our Algo-
rithm 1 is that after sampling each architecture, we further
train it in the super-network for 1 epoch and evaluate its
validation loss. We refer this validation loss as the 2nd or-
der validation loss. By contrast, we evaluate the validation
losses of architectures in the super-network without further

training, which is referred as the 1st order validation loss.
Note that super-networks in both cases are warmed up, oth-
erwise the validation loss will make no sense. Estimations
depending on the 1st order and 2nd order validation losses
are referred as 1s order and 2nd order estimation respec-
tively. The results of searching with 1st order and 2nd order
estimations are listed in Table 3.

Method Order Time
(Days)

Test Error
(%)

DARTS 1st 1.5 3.00 ± 0.14
2nd 4.0 2.76 ± 0.09

Amended-
DARTS

1st - -
2nd 1.0 2.81 ± 0.21

PVLL-NAS 1st 0.10 3.48
2nd 0.20 2.72 ± 0.02

Table 3. Performances of architectures found on CIFAR-10 with
different order of approximation.
Not surprisingly, the performance of architecture obtained
by searching with the 1st order estimation is worse than
that obtained by the regular search scheme using 2nd order
estimation, which is even worse than the 1st order approxi-
mation in the original DARTS. However, after the 2nd order
estimation is introduced, the improvement is significant. Be-
sides, our 2nd order estimation method is about two times
slower than its 1st order counterpart, which is mainly caused
by the sampled architecture training. We also compared our
results with a DARTS approach amended by a mathemati-
cal method to make the 2nd order approximation, namely
Amended-DARTS (Bi et al., 2019). Amended-DARTS is
experimented on two different search spaces. We only com-
pared with their results on S1 search space, which is the
same to the original DARTS. The comparison with other
baselines demonstrates the effectiveness and stability of
proposed validation loss estimator.

5.4. Comparison of Different Sampling Strategies

We furthermore conduct in-depth analysis towards the effect
of our sampling strategies. In Fig. 3 (a), the learning curve
of estimator trained with our sampling strategy is compared
against learning curve with uniformly sampling as a baseline.
We sampled 100 architectures with our sampling strategy.
Another 100 architectures are uniformly sampled. The test
set is 100 independently and randomly (also uniformly)
sampled architectures from the search space. We also ensure
that training sets are mutually exclusive from the test set.
The same elements are allowed to exist in both training sets,
but due to the fact that the search space is large enough,
this is very unlikely to happen. For fairness, we train two
estimators with the same setting. Training data is passed to
the estimators one by one at each epoch during the training
progress to simulate the behaviour in architecture searching.
The estimator performance is tested on the remaining test
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Model GPUs Time
(Days)

Params
(M)

+⇥

(M)
Test Error (%)
Top-1 Top-5

Inception-V1 - - 6.6 1448 30.2 10.1
MobileNet-V2 - - 3.4 300 28.0 -
ShuffleNet - - ⇠ 5 524 26.3 -
Progressive NAS 100 1.5 5.1 588 25.8 8.1
NASNet-A 450 3-4 5.3 564 26.0 8.4
NASNet-B 450 3-4 5.3 488 27.2 8.7
NASNet-C 450 3-4 4.9 558 27.5 9.0
AmoebaNet-A 450 7 5.1 555 25.5 8.0
AmoebaNet-B 450 7 5.3 555 26.0 8.5
AmoebaNet-C 450 7 6.4 570 24.3 7.6
DARTS 1 4 4.9 595 26.7 8.7
GDAS 1 0.21 5.3 581 26.0 8.5
PVLL-NAS 1 0.20 4.8 532 25.6 8.1

Table 2. Top-1 and top-5 error rates of PVLL-NAS and other state-
of-the-art cnn models on ImageNet dataset.
a large-scale dataset containing 1.3 million training images
and 50,000 testing images in 10,000 categories. The training
images in it is 26 times that of CIFAR-10, and its classes
are 100 times that of CIFAR-10, which makes it a common
dataset for testing the generality of architectures in NAS
studies. We follow the mobile setting (Sandler et al., 2018)
for ImageNet, where the input size is fixed to 224⇥224 with
3 channels and the number of multiply-add operations is re-
stricted to be less than 600M. We set other hyper-parameters
following (Dong & Yang, 2019; Liu et al., 2018b; Xu et al.,
2019). The constructed model contains 14 layers with 48
initial channels.

We compare our results with other NAS algorithms in Table
2. PVLL-NAS outperforms all other gradient-based NAS
algorithms, including DARTS and GDAS, which reaches
25.6% error rate on ImageNet with 4.8M parameters. Com-
pared with other baselines, our algorithm achieves com-
petitive performance, which demonstrates the efficiency of
PVLL-NAS. Consistently, PVLL-NAS achieves better trade-
offs on both CIFAR-10 and ImageNet, which highlights the
generality of our algorithm.

5.3. The First and Second Order Estimation

We argue that optimize the architecture parameter with the
architecture gradient estimated with the proxy validation
loss landscape is reasonable, and the effect of this estima-
tion is competitive comparing to other estimation methods.
To demonstrate that, we design an experiment following
the concept of the 2nd order approximation in DARTS (Liu
et al., 2018b). The 2nd order approximation of architecture
gradient in DARTS is to approximate the optimal model
weight w⇤ by a single training step and compute architec-
ture gradient based on the approximated model weight w0.
A counterpart of the 2nd order approximation in our Algo-
rithm 1 is that after sampling each architecture, we further
train it in the super-network for 1 epoch and evaluate its
validation loss. We refer this validation loss as the 2nd or-
der validation loss. By contrast, we evaluate the validation
losses of architectures in the super-network without further

training, which is referred as the 1st order validation loss.
Note that super-networks in both cases are warmed up, oth-
erwise the validation loss will make no sense. Estimations
depending on the 1st order and 2nd order validation losses
are referred as 1s order and 2nd order estimation respec-
tively. The results of searching with 1st order and 2nd order
estimations are listed in Table 3.

Method Order Time
(Days)

Test Error
(%)

DARTS 1st 1.5 3.00 ± 0.14
2nd 4.0 2.76 ± 0.09

Amended-
DARTS

1st - -
2nd 1.0 2.81 ± 0.21

PVLL-NAS 1st 0.10 3.48
2nd 0.20 2.72 ± 0.02

Table 3. Performances of architectures found on CIFAR-10 with
different order of approximation.
Not surprisingly, the performance of architecture obtained
by searching with the 1st order estimation is worse than
that obtained by the regular search scheme using 2nd order
estimation, which is even worse than the 1st order approxi-
mation in the original DARTS. However, after the 2nd order
estimation is introduced, the improvement is significant. Be-
sides, our 2nd order estimation method is about two times
slower than its 1st order counterpart, which is mainly caused
by the sampled architecture training. We also compared our
results with a DARTS approach amended by a mathemati-
cal method to make the 2nd order approximation, namely
Amended-DARTS (Bi et al., 2019). Amended-DARTS is
experimented on two different search spaces. We only com-
pared with their results on S1 search space, which is the
same to the original DARTS. The comparison with other
baselines demonstrates the effectiveness and stability of
proposed validation loss estimator.

5.4. Comparison of Different Sampling Strategies

We furthermore conduct in-depth analysis towards the effect
of our sampling strategies. In Fig. 3 (a), the learning curve
of estimator trained with our sampling strategy is compared
against learning curve with uniformly sampling as a baseline.
We sampled 100 architectures with our sampling strategy.
Another 100 architectures are uniformly sampled. The test
set is 100 independently and randomly (also uniformly)
sampled architectures from the search space. We also ensure
that training sets are mutually exclusive from the test set.
The same elements are allowed to exist in both training sets,
but due to the fact that the search space is large enough,
this is very unlikely to happen. For fairness, we train two
estimators with the same setting. Training data is passed to
the estimators one by one at each epoch during the training
progress to simulate the behaviour in architecture searching.
The estimator performance is tested on the remaining test
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Some differentiable NAS methods use the 2nd order estimation for
better gradients. We demonstrate that the gradients estimated by PVLL
is also competitive.
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(a) 

 
(b) 

Figure 3. (a) presents the learning curves with different sampling
strategies. The dashed line indicates training loss, and the solid
line indicates test loss. (b) shows the learning curves on search
space with different sizes.

With
Sampler Warm-up Weighted

Loss
Test Error

(%)
Y Y Y 2.72 ± 0.02
Y Y N 2.81 ± 0.08
Y N Y 3.10 ± 0.22
Y N N 3.03 ± 0.30
N Y N/A 3.08 ± 0.24
N N N/A 3.20 ± 0.32

Table 4. Ablation studies on the performances of architectures
searched on CIFAR-10 with different strategies.

set after each epoch.

As shown in Fig. 3 (a), our sampling strategy shows superior
prediction performance when sampling number is limited
compared with uniform sampling. The sampled architec-
tures fed to estimator are determined by the gradient of
proposed validation loss estimator for architecture updating,
which makes full use of sampled architectures for estimator
updating and thus accelerates the training as well as reduces
the requirement for sample number. As sample number
increases, our method still shows stable performance and
continuously outperforms uniformly sampling.

Furthermore, we compare the performance of architectures
found with different sampling strategies in Table 4. Besides,
the involvement of warm-up and the weigh term of the
loss function in Eq. 8 is also justified. For searching with
warm-up, we use 100 randomly sampled architectures to
warm up the model and then search for 100 steps in which
100 new architectures are extended to the training set. It

is worth noting that when there is no warm-up, we will
search for 200 steps to maintain the same search budget.
The purpose of using warm-up is to enable our sampler to
acquire prior knowledge about loss space at the beginning of
searching. Without a warm-up, the initial behaviour of our
sampler will be close to uniform sampling, but as the search
proceeds, it still has the potential to outperform uniform
sampling. Comparing all the variants in Table. 4, the usage
of sampler, warm-up and weighted loss all contribute to
the performance and warm-up boosts the stability of our
algorithm. This observation empirically verifies that the
prior knowledge of loss space is necessary for the sampler to
start with and the weighted loss contributes to the algorithm
consistency. With the combination of these components,
the discovered architecture achieves the best and the most
stable performance among all the variants, which illustrates
the complementarity of each component.

5.5. Estimators on Different Search Spaces

In Theorem 2, we have shown that the label complexity
of our algorithm is related to the size of the search space.
In this section, we furthermore justify this conclusion with
experiments. We define 4 search spaces with different size.
The size of the search space is controlled by both the num-
ber of operation candidates and the number of operations
allowed in each cell. Detailed settings for each search space
is shown in the legend of Fig. 3 (b). The total number of
architectures in a search space can be easily computed given
those settings. For example, with 8 operation candidates and
4 operations per cell, the number of cells can be constructed
is 8(2+3+4+5) = 4.39⇥1012. As there are two kinds of cells
(normal and reduction), the total number of architectures in
the search space is (4.39⇥ 1012)2 = 1.93⇥ 1025. Test loss
curves of estimators trained on those search spaces are com-
pared. Theorem 2 suggests that the speed of convergence is
proportional to the size of data space in sub-linear relation.
Thus, the increment of size of search space impacts slightly
on convergence speed of estimator training. As shown in
Fig. 3 (b), 4 search spaces with different size have similar
converge speed and requirement of sample number, which
illustrates the efficiency of our algorithm.

6. Conclusion

In this paper, we propose to search for neural architectures
with a proxy validation loss landscape. We introduce a novel
method to dynamically sample architecture to be evaluated
for the efficient validation loss estimator training. Both theo-
retical analysis and experiments show that this approach can
establish a satisfactory proxy validation loss landscape with
less computational resource. Experimental results demon-
strate that the proposed NAS algorithm can efficiently de-
sign networks of the competitive performance compared to
state-of-the-art methods.
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Different sampling strategies are tested, including using warm-up or
not, using weighted loss or not, and using a uniform sampler.
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Conclusion

In this paper, we propose to search for neural architectures with a
proxy validation loss landscape. We introduce a novel method to
dynamically sample architecture to be evaluated for the efficient
validation loss estimator training. Both theoretical analysis and
experiments show that this approach can establish a satisfactory proxy
validation loss landscape with less computational resource.
Experimental results demonstrate that the proposed NAS algorithm can
efficiently design networks of the competitive performance compared
to state-of-the-art methods.
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