Neural Architecture Search
in a Proxy Validation Loss Landscape

Yanxi Lit, Minjing Dong?, Yunhe Wang?, Chang Xu?

lUniversity of Sydney 2Huawei Noah's Ark Lab.



Alm

Improve the efficiency of Neural Architecture Search (NAS) via learning a
Proxy Validation Loss Landscape (PVLL) with historical validation results.
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The Bi-level Setting of NAS

HlAiIl L(]D)valid; w’ (A)7 A)7

s.t. w*(A) = argmax L(Dqin; w, A).

The bi-level optimization is solved iteratively;

When « is updated, w* (&) also changes;

W needs to be updated towards w*(«), and a is evaluated again;

In this process, intermediate validation results are used once and discarded.
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Make Use of Historical Validation Results

Approach: learn a PVLL with them
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Advantages:
* Learning a Proxy Validation Loss Landscape (PVLL) with

PV |_|_— N AS historical validation results;

 Sampling new architectures from the PVLL for further
evaluation and update;

» Efficient architecture search with gradients of the PVLL.
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Methodology
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Search Space

A micro search space: the NASNet search space

G )

IV =3 "0, ;(I'"), fori=2,34,5.

1<J
0 € O, ’O| = K.
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Operation Candidates

We use K = 8:

* 3 X 3 separable convolution; 3 X 3 max pooling;

e 5 X 5 separable convolution; 3 X 3 average pooling;

* 3 X 3 dilated separable convolution; Identity (i.e. skip-connection);

* 5 X 5 dilated separable convolution; * Zero (i.e. not connected).
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Select Operations

Calculate architecture parameters with Gumbel-Softmax:
A oo (@) + S(?)(/T) |
Sorexp((ayy) +€5))/7)
Sample operations with argmax:
19~ 3" R ~<’f> L OW (1D,

1<7J

where k = argmax, h(k)
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Evaluate Architectures

~ ~

mlin »C(]D)fualid;w*(H)? H)7
S.t. w*(I:I) — arg maX»C(ID)train;wa-ﬁI)?

H = GumbelSoftmax(A; &, 7).
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Proxy Validation Loss Landscape

The PVLL is learned by learning a mapping u: H- L;

T

1 1

min Lr(Y) = = Z - (¢(ﬁt) — £t>2.

(5 T

i—1 Pt
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Proxy Validation Loss Landscape

The PVLL is learned with a memory M, such that

M ={(H,L),1<t<T}.

After each sampling, the memory M is updated by:

M =M U{(Hy, L)}
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Proxy Validation Loss Landscape

The next architecture is determined by the current architecture A and
its gradients in the PVLL:

A A—n-Vay;(H),

where A’ is the next architecture and 1 is a learning rate.
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Algorithm 1 Loss Space Regression

1:

Overall Algorithm

S S w—Y
W N = O

14:
15:
16:
17:
18:
19:

N e A U S i

Initialize a warm-up population:
P={H;i=1,.,N}
for each I:Ii € P do
Warm-up architecture H; for 1 epoch
end for
Initialize a performance memory M = ()
for each I~{i € Pdo
Train architecture H; for 1 epoch
Evaluate architecture H ;’s loss L;
Set M = M U{(H;,L;)}
end for

: Warm-up ¢ with M
cfort=1—"Tdo )
Sample an architecture as in Eq. 4 with H:

H; = GumbelSoftmax(A¢; &, 7)
Optimize network with loss in Eq. 5
Evaluate architecture to obtain loss £;
Set M = M U{(Hy, L)}
Update ¢ with Eq. 8
Update A; to A;yq with Eq. 10
end for
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Theoretical Analysis
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Theoretical Analysis

*The algorithm consistency;
*The label complexity.
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Consistency of PVLL

Theorem 1. Let W be a hypothesis class containing all the possible hypothesises
of estimator v. For any 0 > 0, with probability at lest 1 — 9, Vi) € W:

Le(v) ~ L()| < \/ 2dting)

where d is the Pollard’s pseudo-dimension of W.
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Label Complexity of PVLL

Theorem 2. With probability at least 1 — 90, to learn an estimator 1 with error
bound € < \/(8/N)(d +1n(2/3)), the number of labels requested by the algorithm
1s at most the order of

O (\/N(d+ In (2/5))) .
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Experiments
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Model GPUs Time Params Test Error
Search and Evaluate COL L )
ResNet-110 - - 1.7 6.61
DenseNet-BC - - 25.6 3.46
on Cl FAR 10 MetaQNN 10 8-10 11.2 6.92
NAS 800 21-28 7.1 4.47
NAS+more filters 800 21-28 374 3.65
We search for architectures on Eﬁﬁg _— } 8-;3 gég ;‘g;
. +more channcis . . .
CIFAB-lO. Firstly, 100 random NASNeCA 150 o 23 S
architectures are sampled for NASNet-A-+cutout 450 3-4 3.3 2.65
the warm-up of PVLL. Then, we ENAS 1 0.45 4.6 3.54
search for 100 steps in the ENAS+cutout 1 0.45 4.6 2.89
PVLL. DARTS(1st)+cutout 1 1.50 3.3 3.00
DARTS(2nd)+cutout 1 4 3.3 2.76
NAONet+cutout 200 1 128 2.11
NAONet+WS 1 0.30 2.5 3.53
GDAS 1 0.21 34 3.87
GDAS+cutout 1 0.21 34 2.93
PVLL-NAS 1 0.20 3.3 2.70

Table 1. Comparison of PVLL-NAS with different state-of-the-art
CNN models on CIFAR-10 dataset.
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Generalize to
ImageNet

Architectures found on CIFAR-
10 is generalized to ImageNet
for evaluation. Evaluation on
ImageNet follows the mobile
setting, i.e. no more than 600
multi-add operations.

ICML 2020

Time Params +x  Test Error (%)
Model GPUS  Days)y M) (M) TTop-T  Top-s
Inception-V1 - - 6.6 1448  30.2 10.1
MobileNet-V?2 - - 34 300 28.0 -
ShuffleNet - - ~5 524 26.3 -
Progressive NAS | 100 1.5 5.1 588  25.8 8.1
NASNet-A 450 3-4 5.3 564 26.0 8.4
NASNet-B 450 3-4 5.3 488 27.2 8.7
NASNet-C 450 3-4 4.9 558 27.5 9.0
AmoebaNet-A 450 7 5.1 555 25.5 8.0
AmoebaNet-B 450 7 5.3 555 26.0 8.5
AmoebaNet-C 450 7 6.4 570 243 7.6
DARTS 1 4 4.9 595 26.7 8.7
GDAS 1 0.21 5.3 581 26.0 8.5
PVLL-NAS 1 0.20 4.8 532 25.6 8.1

Table 2. Top-1 and top-35 error rates of PVLL-NAS and other state-

of-the-art cnn models on ImageNet dataset.
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Ablation Test - Estimation Strategies

Some differentiable NAS methods use the 2nd order estimation for
better gradients. We demonstrate that the gradients estimated by PVLL
is also competitive.

Time Test Error

(Days) (%)

Ist 1.5 3.00 £0.14
DARTS 2nd 4.0 2.76 = 0.09

Amended- Ist - -
DARTS 2nd 1.0 2.81 £0.21
Ist 0.10 3.48

2nd 0.20 2.72 +0.02

Method Order

PVLL-NAS

Table 3. Performances of architectures found on CIFAR-10 with
different order of approximation.
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Ablation Test - Sampling Strategies

Different sampling strategies are tested, including using warm-up or
not, using weighted loss or not, and using a uniform sampler.

With Warm-up Weighted | Test Error
Sampler Loss (%)
Y Y Y 2.72 £0.02
Y Y N 2.81 £0.08
Y N Y 3.10 £ 0.22
Y N N 3.03 + 0.30
N Y N/A 3.08 £0.24
N N N/A 3.20 £ 0.32

Table 4. Ablation studies on the performances of architectures
searched on CIFAR-10 with different strategies.

ICML 2020 Neural Architecture Search in a Proxy Validation Loss Landscape 23



Conclusion
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Conclusion

In this paper, we propose to search for neural architectures with a
proxy validation loss landscape. We introduce a novel method to
dynamically sample architecture to be evaluated for the efficient
validation loss estimator training. Both theoretical analysis and
experiments show that this approach can establish a satisfactory proxy
validation loss landscape with less computational resource.
Experimental results demonstrate that the proposed NAS algorithm can
efficiently design networks of the competitive performance compared
to state-of-the-art methods.
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