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Why many adversarial defenses are broken?

o Deep neural networks are shown to be vulnerable to adversarial
attacks, which motivates robust learning techniques
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o A plethora of defenses have been proposed, however, many of these
have been shown to fail*

L Athalye, A., Carlini, N., and Wagner, D. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. ICML’ 2018
Y.H. Wu, C.H. Yuan, S.H. Wu Runtime Masking and Cleansing ICML'20 3/34



Why many adversarial defenses are broken?

o Recent study? shows the sample complexity of robust learning can be
significantly larger than standard training

2Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and Madry, A. Adversarially
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Why many adversarial defenses are broken?

o Recent study? shows the sample complexity of robust learning can be
significantly larger than standard training

o A theoretically grounded way to increase the adversarial robustness is
to acquire more data

o This partially explains why the adversarial training, a data
augmentation technique, is empirically strong

2Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and Madry, A. Adversarially

robust generalization requires more data. NeurlPS, 2018
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WebNN?3

o Use a web-scale image database as a manifold and project a test

image onto the manifold

o Make more robust prediction by taking only the projected image as

inputs
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Output Prediction

Nearest Neighbors from Manifold Projection

3Dubey, A., Maaten, L. v. d., Yalniz, Z., Li, Y., and Mahajan, D. Defense against
adversarial images using web-scale nearest-neighbor search. CVPR, 2019
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Drawback: 50 Billion Images May be Too Large

o Web-scale database may not be available in other domains
o Performance drops when using smaller datasets
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(3 Runtime Masking and Cleansing (RMC)
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Goal

o Most existing defenses try to get more data at training time
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Goal

o Most existing defenses try to get more data at training time
o We propose a runtime defense

@ Adapts network weights 0 for a test point
@ Makes inferecne § =f(%;0)

o Merits:

o Uses potentially large test data to improve adversarial robustness
o Is compatible with existing train-time defenses
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Challenge: Test Data are Unlabeled

o How to adapt network weights 6 for unlabeled £7?
o Online adversarial training is not applicable
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Challenge: Test Data are Unlabeled

o How to adapt network weights 6 for unlabeled £7?
o Online adversarial training is not applicable
o Extension: KNN-based online adversarial training
@ For each %, find its KNN N(&; D) from the training set D
@ Augment N(&;D) with adversarial examples (cyan points) perturbed
from N(%;D)
@ Fine-tune the networks weights 8 based on N(%;D)
@ Inference y =f(%;0)
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Unfortunately, It Does Not Work!
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Unfortunately, It Does Not Work!

o Figure (b) shows a histogram of N(&;D) w.r.t. different labels (x-axis)
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Unfortunately, It Does Not Work!

o Figure (b) shows a histogram of N(&;D) w.r.t. different labels (x-axis)
o N(#;D) contains examples of the same label
o The adversarial point £ can mislead KNN selection
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Unfortunately, It Does Not Work!

o Figure (b) shows a histogram of N(&;D) w.r.t. different labels (x-axis)
o N(#;D) contains examples of the same label
o The adversarial point £ can mislead KNN selection

o Therefore, the fine-tuned 6 ends up being less robust
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Runtime Masking and Cleansing (RMC)

o RMC precomputes adversarial examples

@ Augment D with adversarial examples to get D’
@ Given a test point £, find its KNN N(&; D)’ from D’
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Runtime Masking and Cleansing (RMC)

o RMC precomputes adversarial examples
@ Augment D with adversarial examples to get D’
@ Given a test point £, find its KNN N(&; D)’ from D’
@ Adapt the networks weights 8 based on N(#;D’)
@ Inference § =f(%;0)
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Why Does It Work?

o As Figure (c) shows, N(%;D’) is no longer misled by the adversarial &
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Why Does It Work?

o As Figure (c) shows, N(%;D’) is no longer misled by the adversarial &
o Defense effects:

o The diverse-labeled N(#;D’) cleanses the 6 of the non-robust patterns
o Also, dynamically masks the network gradients
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(@ Experiments
o Train-Time Attacks
o Defense-Aware Attacks
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Datasets

o MNIST
o CIFAR-10
o ImageNet
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(@ Experiments
o Train-Time Attacks
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MNIST & CIFAR-10

Table 1. Train-time white-box attacks Table 2. Train-time white-box attacks
(¢ =0.3) on MNIST. (e = 8/255) on CIFAR-10.
Acc. Robustness Acc. Robustness
FGSM BIM PGD CW-L2 JSMA FGSM BIM PGD CW-L2 JSMA

Regularly Trained Regularly Trained

None | 99.3 | 11.6 0.6 0.5 0.7 14.1 None | 833 | 253 8.5 6.7 9.4 8
DeepNN | 99.2 | 123 0.6 0.5 75.3 58.2 DeepNN | 84.3 | 26.5 9.2 8 55.2 23
WebNN | 98.2 | 704 | 82.6 | 853 87.4 87.1 WebNN | 81.8 | 409 | 47.8 | 48.6 | 64.6 383

RMC | 99.3 | 993 | 99.3 | 99.3 | 99.3 99.1 RMC | 89.3 | 853 | 86.7 | 87.5 | 89.7 88.6
Adversarially Trained w. FGSM Adversarially Trained w. FGSM

None 99 94 514 | 0.7 16.3 42.9 None | 832 | 789 9.3 8.3 8.8 17.3
DeepNN | 98.8 94 569 | 1.7 85.9 712 DeepNN 85 81 9.9 9.1 56.2 23.1
WebNN | 98.6 | 943 | 85.2 | 90.8 | 89.1 87.9 ‘WebNN 80 81.9 | 425 | 433 | 642 34.4

RMC | 99.2 | 98.6 | 98.9 | 989 | 98.7 98.8 RMC | 89.3-| 87.3 | 87.1 | 88.7 | 89.7 89.1
Adversarially Trained w. PGD Adbversarially Trained w. PGD

None | 99.1 | 96.6 93 | 948 | 65.6 94.6 None | 78.7 | 50.6 | 43.6 | 44.3 11.5 7.8
DeepNN | 98.8 | 964 | 94.5 | 95.8 91 954 DeepNN | 75.6 | 52.5 | 45.6 | 45.8 | 48.7 38.5
WebNN | 98.7 | 96.5 | 94.5 | 958 91 97.5 WebNN | 73.5 54 48.1 | 484 | 534 47

RMC | 99.2 | 982 | 97.5 | 97.8 | 99.1 98.9 RMC | 88.3 | 81.2 | 81.1 | 80.7 | 88.7 87.7
Regularly Trained w. Jacobbian Reg. Regularly Trained w. Jacobbian Reg.

None | 94.8 | 22.1 7.6 8 13.7 26.5 None | 86.3 | 37.9 | 20.6 | 20.2 8 10.2
DeepNN | 959 | 21.1 8.9 9.6 55.7 41 DeepNN | 87.8 | 39.8 21 214 | 63.1 41.1
WebNN | 94.2 | 555 | 55.6 | 58.3 79 66.4 WebNN | 76.2 | 499 | 555 | 555 | 68.9 49

RMC | 99.3 | 989 | 989 | 99.1 | 99.2 98 RMC | 87.1 | 824 | 83.6 | 83.5 | 86.6 88.4
Regularly Trained w. Cross-Lipschitz Reg. Regularly Trained w. Cross-Lipschitz Reg.

None | 99.3 | 70.6 | 30.7 | 19.3 | 23.8 48.6 None | 85.3 31 18.6 | 18.4 8.4 13
DeepNN | 99.2 | 732 | 375 | 223 | 727 73.4 DeepNN | 86.9 | 32.6 19 19 61.9 36.8
‘WebNN 97 79.8 | 75.1 | 744 | 82.8 85.5 WebNN | 74.5 | 46.5 51 50.5 | 67.1 48.6

RMC | 993 | 99.2 | 99.2 | 99.3 | 99.2 98.2 RMC 85 79.8 | 80.8 | 81.1 | 849 86.9
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ImageNet

Table 3. Train-time white-box attacks on ImageNet.

Acc. Robustness

€=8/255 €=16/255
None 72.9 8.5 5.2
Adv. Trained 62.3 N/A 52.5
DB 65.3 N/A 55.7
DeepNN 26.6 12.9 8.7
WebNN 27.8 18.8 15.2
RMC 73.6 62.4 55.9
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o For all datasets, RMC achieves the state-of-the-art robustness

o RMC yields significantly higher clean accuracy
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ImageNet

Table 3. Train-time white-box attacks on ImageNet.

Acc. Robustness

€=8/255 €=16/255
None 72.9 8.5 5.2
Adv. Trained 62.3 N/A 52.5
DB 65.3 N/A 55.7
DeepNN 26.6 12.9 8.7
WebNN 27.8 18.8 15.2
RMC 73.6 62.4 55.9

o For all datasets, RMC achieves the state-of-the-art robustness
o RMC yields significantly higher clean accuracy
o RMC does not enforce a smooth decision boundary

o For gray- black-box attacks, please refer to our main paper
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(@ Experiments

o Defense-Aware Attacks
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Defense-Aware Attacks

o At runtime, attackers may be aware of RMC and try to circumvent it
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Strong Attack: PGD-Skip

o Assumes that all information is exposed, including

o Test sequence
o D’ and adapted model weights 0's

Runtime

Test Sequence

Katt

y

Hacker
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Strong Attack: PGD-Skip
o Assumes that all information is exposed, including

o Test sequence
o D’ and adapted model weights 0's

o l.e., the attack point 22" can bypass all previous adaptations

Test Sequence Runtime

o
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RMC Could be Broken by PGD-Skip

o About 15% robustness

Table 5. Robustness of RMC under the
Defense-Aware Attack

q 0] 50 100

p=100 | 149 | 19.8 [ 20.8
(a) PGD-Skip-Delayed
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However, PGD-Skip is Unrealistic

o Two strong assumptions

@ Access to all data points at runtime

@ No delay to place an attack point £
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However, PGD-Skip is Unrealistic

o Two strong assumptions

@ Access to all data points at runtime
o When model is publicly deployed, it is unlikely to eavesdrop every user's
input X
@ No delay to place an attack point £
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However, PGD-Skip is Unrealistic

o Two strong assumptions

@ Access to all data points at runtime
o When model is publicly deployed, it is unlikely to eavesdrop every user's
input X
@ No delay to place an attack point £
o It is hard to mute other users
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More Realistic Defense-Aware Attacks

o PGD-Skip-Partial
o Only partial points in the input sequence are known
o PGD-Skip-Delayed

o The adversary generates/places an attack point £

with some delay
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PGD-Skip-Partial

Test Sequence
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PGD-Skip-Partial

Test Sequence

Partially
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PGD-Skip-Delayed

Test Sequence
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PGD-Skip-Delayed

Test Sequence
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PGD-Skip-Delayed

Runtime

Test Sequence
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PGD-Skip-Delayed

Test Sequence
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The Revenge of RMC

o With some minor tweaks, RMC can defend these two attacks

o g: delay of PGD-Skip-Delayed

o "known:" portion of eavesdropped points by PGD-Skip-Partial

Table 5. Performance of RMC+ under the
(a) PGD-Skip-Delayed and (b) PGD-Skip-Partial attacks.

6=05 §=0.75 6=1
q \ 0 50 100 0 50 100 0 50 100
p=50 | 193 | 51 | 637 | 204 | 489 | 62.8 | 209 | 44.1 | 48.6
p=100 | 25.3 | 50.8 | 55.1 | 25.5 | 51.5 | 56.1 | 39.5 41 30.6
(a) PGD-Skip-Delayed with D’ replacement
6=0.5 §=0.75 6=1
known | 30% 50% 70% 30% 50% 70% 30% 50% 70%
p=50 | 484 | 48.1 | 452 | 475 [ 49 | 433 [ 504 | 524 | 495
p=100 | 64.1 | 63.1 | 63.5 | 643 | 61.1 | 594 | 633 | 61.7 | 61.8
p=150 | 69.2 | 69.2 | 685 | 689 | 68.7 | 683 | 59.6 | 61.1 64.8
(b) PGD-Skip-Partial with D’ replacement
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How Long is the Delay Incurred by RMC at

Runtime?

o About 1 second on CIFAR-10 and a delay of 20-40 seconds on

ImageNet

o May be acceptable for non-realtime applications
o Can be accelerated by existing techniques
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Conclusions & Implications

o We proposed RMC, the first runtime defense

o Leverages potentially large test data to improve the robustness of a
model after deployment
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Conclusions & Implications

o We proposed RMC, the first runtime defense

o Leverages potentially large test data to improve the robustness of a
model after deployment

o Implications:

o Currently, new attacks trigger new deployments
o RMC could end this endless chasing game

o Questions? Chat with us at session timel!
o Or email to: chyuan@datalab.cs.nthu.edu.tw
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