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Why many adversarial defenses are broken?

Deep neural networks are shown to be vulnerable to adversarial

attacks, which motivates robust learning techniques

https://www.tensorflow.org/tutorials/generative/images/adversarial_example.png

A plethora of defenses have been proposed, however, many of these
have been shown to fail1

1
Athalye, A., Carlini, N., and Wagner, D. Obfuscated gradients give a false sense of

security: Circumventing defenses to adversarial examples. ICML’ 2018
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Why many adversarial defenses are broken?

Recent study
2

shows the sample complexity of robust learning can be

significantly larger than standard training

A theoretically grounded way to increase the adversarial robustness is

to acquire more data
This partially explains why the adversarial training, a data

augmentation technique, is empirically strong

2
Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and Madry, A. Adversarially

robust generalization requires more data. NeurIPS, 2018
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WebNN3

Use a web-scale image database as a manifold and project a test

image onto the manifold

Make more robust prediction by taking only the projected image as

inputs

3
Dubey, A., Maaten, L. v. d., Yalniz, Z., Li, Y., and Mahajan, D. Defense against

adversarial images using web-scale nearest-neighbor search. CVPR, 2019
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Drawback: 50 Billion Images May be Too Large

Web-scale database may not be available in other domains

Performance drops when using smaller datasets
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Goal

Most existing defenses try to get more data at training time

We propose a runtime defense
1 Adapts network weights q for a test point x̂
2 Makes inferecne ŷ = f (x̂;q)

Merits:

Uses potentially large test data to improve adversarial robustness

Is compatible with existing train-time defenses
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Challenge: Test Data are Unlabeled
How to adapt network weights q for unlabeled x̂?

Online adversarial training is not applicable

Extension: KNN-based online adversarial training

1 For each x̂, find its KNN N(x̂;D) from the training set D
2 Augment N(x̂;D) with adversarial examples (cyan points) perturbed

from N(x̂;D)
3 Fine-tune the networks weights q based on N(x̂;D)
4 Inference ŷ = f (x̂;q)
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Unfortunately, It Does Not Work!

Figure (b) shows a histogram of N(x̂;D) w.r.t. different labels (x-axis)

N(x̂;D) contains examples of the same label

The adversarial point x̂ can mislead KNN selection

Therefore, the fine-tuned q ends up being less robust
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Runtime Masking and Cleansing (RMC)
RMC precomputes adversarial examples

1 Augment D with adversarial examples to get D0

2 Given a test point x̂, find its KNN N(x̂;D)0 from D0

3 Adapt the networks weights q based on N(x̂;D0)
4 Inference ŷ = f (x̂;q)
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Why Does It Work?

As Figure (c) shows, N(x̂;D0) is no longer misled by the adversarial x̂

Defense effects:

The diverse-labeled N(x̂;D0) cleanses the q of the non-robust patterns

Also, dynamically masks the network gradients
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Datasets

MNIST

CIFAR-10

ImageNet
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MNIST & CIFAR-10
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ImageNet

For all datasets, RMC achieves the state-of-the-art robustness

RMC yields significantly higher clean accuracy
RMC does not enforce a smooth decision boundary

For gray- black-box attacks, please refer to our main paper
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Defense-Aware Attacks

At runtime, attackers may be aware of RMC and try to circumvent it
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Strong Attack: PGD-Skip
Assumes that all information is exposed, including

Test sequence

D0
and adapted model weights q ’s

I.e., the attack point x̂att
can bypass all previous adaptations
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RMC Could be Broken by PGD-Skip

About 15% robustness
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However, PGD-Skip is Unrealistic

Two strong assumptions

1 Access to all data points at runtime

When model is publicly deployed, it is unlikely to eavesdrop every user’s

input x̂

2 No delay to place an attack point x̂att

It is hard to mute other users
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More Realistic Defense-Aware Attacks

PGD-Skip-Partial

Only partial points in the input sequence are known

PGD-Skip-Delayed

The adversary generates/places an attack point x̂att
with some delay
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PGD-Skip-Partial
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PGD-Skip-Partial

Y.H. Wu, C.H. Yuan, S.H. Wu Runtime Masking and Cleansing ICML’20 26 / 34



PGD-Skip-Delayed
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PGD-Skip-Delayed
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PGD-Skip-Delayed
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The Revenge of RMC

With some minor tweaks, RMC can defend these two attacks

q: delay of PGD-Skip-Delayed

“known:” portion of eavesdropped points by PGD-Skip-Partial
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How Long is the Delay Incurred by RMC at
Runtime?

About 1 second on CIFAR-10 and a delay of 20-40 seconds on

ImageNet

May be acceptable for non-realtime applications

Can be accelerated by existing techniques
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Conclusions & Implications

We proposed RMC, the first runtime defense

Leverages potentially large test data to improve the robustness of a

model after deployment

Implications:

Currently, new attacks trigger new deployments

RMC could end this endless chasing game

Questions? Chat with us at session time!

Or email to: chyuan@datalab.cs.nthu.edu.tw
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