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1. Research Problem

Linear Constrained Convex Programming (LCCP):

(P): min  F(u) = G(u) + J(u)
st Au—b=0 (1.1)
uel

(Hy) J is a convex, lower semi-continuous function (not necessarily differentiable) such that
domJnU # 0.

(Hz) G is convex and differentiable, and its derivative is Lipschitz with constant Bg.

(Hs) There exists at least one saddle point for the Lagrangian of (P).

Decomposition for partial structured problem:

N
@ Space decomposition of U: U =Uy x Uz --- x Uy, U; CR™, 3" nj=n.
i=1

N
Q@ J(u) =3 Ji(uj) and A= (A1, As,- -+, An) € R™*is an appropriate partition of A, where
=1
Ajis an m x n; matrix.
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1.1 Motivation

Support vector machine (SVM) problem:

: 1,7 T
(SVM) min sU' ' Qu—1,u M
uelo,c]” 2 n **** e
T, — **** !
s.t. y u= 0 *** ** L oo,
* * 3 "'vu.. .... °

Q € R™" is symmetric and positive-definite.
c>0,ye{-1,1}"
Machine learning portfolio (MLP) problem:

Y Y
Negative objects (y=-1) Positive objects (y=+1)

MLP i TS u+ Au
(MLP)  min 3 + Allull1

st. ulu=p
1u=1

¥ € R™ "M s the estimated covariance matrix of asset
returns.

€ R™is the expectation of asset returns.

p is a predefined prospective growth rate.
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1.1 Motivation

@ In the big data era, the datasets used for computation are very big and are often distributed
in different locations.

@ It is often impractical to assume that optimization algorithms can traverse an entire dataset
once in each iteration, because doing so is either time consuming or unreliable.

@ Coordinate-type methods can make progress by using distributed information and thus,
provide much flexibility for their implementation in the distributed environments.

@ Therefore, we adopt randomized coordinate methods for the constrained optimization
problem with emphasis on the convergence and rate of convergence properties.
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1.2 Related works: au ed Lagrangian decomposition method

The augmented Lagrangian of (P) is L (u, p) = F(u) + (p, Au — b) + Z||Au — b||2.
Augmented Lagrangian method (ALM) (Hestenes, 1969; Powell, 1969)

k1 ; kY.
u = argmin L, (u, p"); .
{ ueu gl does not preserve separability

pk+1 — pk +,Y(Auk+1 _ b)

Augmented Lagrangian decomposition method ()
Alternating Direction Method of Multipliers (ADMM) (Fortin & Glowinski, 1983)

k+1 - K kY.
U1+ :argumelﬂ L'y(U1,U§,Ué(,...,UKI_WUN,p )’

1 1
k+1 . k+1 k k.
ustt = arg min Ly (Ut up, U, . Uk, Uk, pF);

ur €Uy

Gauss-Seidel method for ALM

k+1 - K+1 k41, k+1 K+1 .
uitt = arg min Ly (Ut us T us Tl o, 0F);

ureUy
Kk+1 _ pk Kk+1
Pt = p* (AUt — b).
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1.2 Related works: au ed Lagrangian decomposition method

Augmented Lagrangian decomposition method (Il)
Auxiliary Problem Principle of Augmented Lagrangian (APP-AL) (Cohen & Zhu, 1983)

Ukt = arg mi{](VG(Uk)7 u) + J(u)
ue
+(p* + W(Auk — b), Au) linearize the smooth term in primal problem of ALM
+1D(u, uk); and add a regularization term

pk+1 — pk + 'y(AUkH _ b).

where D(u, v) = K(u) — K(v) — (VK(v),u — v) is a Bregman like function.
Randomized Primal-Dual Coordinate method (RPDC) (This paper)

Choose i(k) from {1, ..., N} with equal probability;

Ukt = arg umei{}(Vf(k)G(Uk)v Uicky) + Jicky (Uigky) randomly updates one block
+(pk + y(Auk — b), Ak Uik of variables in primal subproblem
+1D(u, uk); of APP-AL

pk+1 — pk +p(AUk+1 _ b)
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1.2 Related works: comparison between RPDC and Randomized

Coordinate Descent algorithm (RCD) by Necoara & Patrascu, 2014
Randomized Primal-Dual Coordinate method (RPDC) (This paper)

Choose i(k) from {1, ..., N} with equal probability;
Ukt = arg umei“< G(U )s Uigiy) + Jigr (Uiy) + (X + Y(AUK = b), AjyUiry) + 1 D(u, uk);

pk+1 — pk + p(AUkH —b).
Necoara & Patrascu, 2014 consider problem (P) with A € R'*", b =0, and U = R":
(P): mi'g G(u) +J(u), st alu=0.
S n
where a = (ay, ...,an) " € R". And the randomized coordinate descent algorithm (RCD) by

Necoara & Patrascu, 2014 for (P’) is

Choose i(k) and j(k) from {1, ..., n} with equal probability;
Ui+ Uiy =0 Vi) GLUX), Uigky) + (V7 joi GIUK), Uiy + gk (Uiy)

Ukt = arg mi"a,-(k
1
0 (Uik) + 2 llu — w12,

The RPDC method can deal with more complex problem than RCD.

8/28



PRO

1.2 Related works: similar schemes

Paper Problem Algorithm Theoretical Results
Xu similar to
& Zhang, (P) F is strongly convex: O(1/1?) rate.
RPDC
2018
Gao, Xu similar to
& Zhang, (P) F is convex: O(1/t) rate.
RPDC
2019
F is convex: (i) Almost surely convergence;
. (i) O(1/t) rate;
This paper P RPDC
'S pap (P) Global strong metric subregularity:
(iii) Linear convergence.
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1.3 Contribution

We propose the randomized primal-dual coordinate (RPDC) method based on the first-order
primal-dual method Cohen & Zhu, 1984; Zhao & Zhu, 2019.

(i) We show that the sequence generated by RPDC converges to an optimal solution with
probability 1.

(i) We show RPDC has expected O(1/t) rate for general LCCP.

(iii) We establish the expected linear convergence of RPDC under global strong metric
subregularity.

(iv) We show that SVM and MLP problems satisfy global strong metric subregularity under
some reasonable conditions.
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2. Preliminaries

Lagrangian of (P):
L(U,p) = F(U) + <p7AU - b>7

Saddle point inequality:
YueU,peR™: L(u*,p) < L(u*,p*) < L(u,p*). (2.2)

Karush-Kuhn-Tucker (KKT) system of (P):
Let w = (u, p) and U* x P* be the set of saddle points. Vw € U* x P*,

dulL(u, p) + Ny(u) ) _ ( VG(u) + 8J(u) + AT p + Ny(u) >

0 € Hw) = < —V,L(u,p) b— Au

with My(u) = {€ : (¢,{ — u) <0,V¢ € U} is the normal cone at u to U.
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3. Convergence and Convergence Rate Analysis of RPDC:
RPDC Algorithm

Algorithm 1: Randomized Primal-Dual Coordinate method (RPDC)

fork=1tot
Choose i(k) from {1, ..., N} with equal probability;
uk+t = arg Teiﬂ(vi(k) G(UK), Ui) + it (Uigk)) + (@5, Aigoy i) + 2 D(u, u¥);
pk+1 — pk 4 p(AUkH _ b).

end for

where gX = p¥ 4 ~(AuX + b) and D(u, v) = K(u) — K(v) — (VK(v), u — v) is a Bregman like
function with K is strongly convex and gradient Lipschitz.

Assumption 2
(i) K is strongly convex with parameter 3 and gradient Lipschitz continuous with parameter B.
(i) The parameters e and p satisfy: 0 < € < 8/[Bg + YAmax(AT A)] and 0 < p < 2,\2,—11
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3. Convergence and Convergence Rate Analysis of RPDC:

Preparation

Filtration:
def . . .
]:k :e{I(O)’I“)v'“vl(k)}v]:kC]:k+1'

The conditional expectation with respect to F: Ex,, = E(-|Fk).
The conditional expectation in the i(k) term for given i(0), i(1), ..., i(k — 1): Ej)-
Reference point:

APP-AL:
T(wk) = L Ty(wk) = arg gn(VG(UK)v u) + J(u) + (g", Au) L |wk=
(Tu(wh), To(wh)) +1D(u, uk); (uk, p¥)
To(WH) = Pk + ~ [ATu(wH) — b] .

i

Ejgyukt! = & Tu(wk) + (1 — §)uk
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3. Convergence and Convergence Rate Analysis of RPDC:

Preparation

For any w, w’ € U x R™, we construct the function

(N —1) € e(N —2)y
A / ::f( L — L(u* * D A _ A2 Au — ?
(w,w') = = 1, p) = LW P70+ D) + e = p I+ S5 = A — bl
Let w' = w*,
e(N—-1) € o e(N—2)y 2
A *) = L(u,p) — L(u*, p* D(u*, —|lp—p* - ||Au — .
(wyw") = S L, p) = LW )]+ D(", 0) + o = pr P 4+ =5 = A — b
Lagrangian residual primal, dual residual feasibility residual

Lemma 1 (Boundness of A(w, w*) and A(w, w’))

There existdy > 0, d» > 0 and d3 > 0, such that

(i) Lower bound of A(w, w*): A(w, w*) > dy|lw — w*||?;

(i) Upper bound of A(w, w*): N(w,w*) < dol|w — w=||2 + DL (u, pr) — L(u™, p*)];
(iii) Lower bound of A(w, w’): A(w, w') > —ads]|p — p*||?.
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3. Convergence and Convergence Rate Analysis of RPDC:

Preparation

From Assumption 1, 2 and RPDC scheme
FEigk [LW T, ¢F) — L(u, ¢)]

< [D(u, uF) — Ej D(u, F )]
‘HEi(k){# [L(uK, pk) — LA+, pFt)]

N—1 T
B—elBgt YAmax(A ' A)] g k412
_ N [luf — b < 55
e

From RPDC scheme
FEjgk [LW*, p) — LW, g))
o [lle — P12 = By llp — pF1112]

P
1 T

N YAmax(A " A)

+ TR DR lluk — u

— S 1Ak — bl + B AT — b2,

(N—1
+E’)(2N )HAUK _ bHZ

k+1 H2
2p—~)(N—1 AL
e( 2,\)’( )HAUk il bHZ}

’ Assumption 2 and ;o Ut = L Tu(wk) + (1 — f)uk ‘

Lemma 2 (Estimation on the variance of A(wX, w))

Lemma 2 (Estimation on the variance of A(wX, w))

There exists dy > 0, such that
MWK, w) — Ejgy AW T, w) > B [L(UKT, p) — L(u, §¥)] + da||wh — T(wk)|2.
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3. Convergence and Convergence Rate Analysis of RPDC:

Convergence Analysis

Lemma 1 Take w = w* in Lemma 2,
ANw,w*) > di|lw — w*|[2 > 0| [AWK, w*) — Ejy AW FT, w*) > dy||wk — T(w)|2.
[ |
]

Robbins-Siegmund’s Lemma
(Robbins & Siegmund, 1971).

l

Theorem 1 (Almost surely convergence)

Theorem 1 (Almost surely convergence)

+oo
() > [wk— T(wh)|? < +o0 as.;
k=0

(i) The sequence {wX} generated by RPDC is almost surely bounded;
(iii) Every cluster point of {wk} almost surely is a saddle point of Lagrangian for (P).
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3. Convergence and Convergence Rate Analysis of RPDC:

Convergence Rate Analysis

From Lemma 2

From Lemma 1 Er AWK, w) — A(wk+T, w))]
h(w,w') = A(w, w') + Z—?/\(W, w*) > SEF [L(u*H, p) — L(u, q¥)]
>0 andE g, [NwK, w*) — A(wk*1, w*)] > 0
L + |
Ex [A(wk, w) — h(wk+1 w)] — e
> 5Ex [L(UFH, p) — L(u, q¥)] O = ='55— and by = =55
L + 1

Theorem 2 (O(1/t) convergence rate)

Theorem 2 (O(1/t) convergence rate)

@ (i) Global estimate of expected bifunction values: E r, [L(Tt, p) — L(u, br)] < %L;V)
Yu € U,p € R™, (u, p) could possibly be random;

@ (i) Expected feasibility: Er, || Ay — b|| < O(1/1);
@ (iii) Expected suboptimality: —O(1/t) < Ex, [F(T;) — F(u*)] < O(1/1).

17/28



PRO PRE CCR LCA NA CCL

4. Linear Convergence of RPDC under Global Strong Metric

Subregularity

Lemma 1 Lemma 2
Aw, w*) > di||w — w*|2; NWK, w) — Ejy Nwk+1, w)
A(w, W*)<d2\I\VW1 w2 > 5Eig [L (UkJr1 p) — L(u, q")]

+C L(u, pr) — L™, 7). ol — T(wh?

l |
v
Lemma 3

(Boundness of ¢(w, w*) and descent inequality of ¢(w*, w*))

where ¢(w, w*) = A(w, w*) + g[L(u, p*) — L(u*, p*)].

Lemma 3 (Boundness of ¢(w, w*) and descent inequality of ¢(w*, w*))

(i) Lower bound of p(w, w*): ¢(w, w*) > d|lw — w*||?.
(i) Upper bound of p(w, w*): p(w, w*) < do||w — w*||2 + e[L(u, p*) — L(u*, p*)].

(iii) Descent inequality of (wk, w*):
(WK, w*) — Ejy g (W', w*) > dy||wh — T(wh)|1? + FIL(u*, p*) — L(u™, p*)]-

18/28



PRO PRE CCR LCA NA CCL

4. Linear Convergence of RPDC under Global Strong Metric

Subregularity

Definition (Global strong metric subregularity (GS-MS))

Let H(x) be a set-valued mapping between real spaces X and Y. Then #(x) is called global
strong metric subregular at x for y when y € H(X) if there exists positive number ¢ such that

dist(x, x) < cdist (y,H(x)), forallx € X.

H(w) is global strong metric subregularity From APP-AL scheme
at w* for0 v(T(wk)) € H(T(wk))
[ T(wk) — w*|| < cdist(0, H(T(w"))) and [|v(T(w¥))|1? < ollwk — T(w")]/?

tince Wk — w* || < ITwK) — w* | + [wk — T(wk)j
[wh — w|| < (cv/5 + 1)|Iwk — T(wh)||

VG(Tu(WF)) — VG(UF) + AT (Tp(wk) — )
where v(T(wk)) = +1 [VK(uk) — VK(Tu(wh))] € H(T(wk)).

T [Pk — To(wh)]
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4. Linear Convergence of RPDC under Global Strong Metric

Subregularity

Global strong metric subregularity Lemma 3
¥ (WK, w*) — Ejp(wkH, wr)
Wk — w* || < (cv/8 + 1)[lwk — T(wh)|l.) | = dallw! = TWH)|1Z + FIL(WH, p*) — L(u™, p*)]
[ |

¥
S(WH, W) — Ejg (w1, w¥) Lemma 3
- 3 {clw—wi FLA) L Do) < e w
with &' = mm{—max{dg(cxf‘fﬂ)z PR N+1 < +e[L(u, p*) — L(u*, p*)]

[ |
¥

Theorem 3 (linear convergence of RPDC)

Theorem 3 (Global strong metric subregularity of H(w) implies linear convergence of RPDC)

For given saddle point w*, if H(w) is global strong metric subregular at w* for 0, then there
exists . = 1 — ¢’ € (0,1) such that Ex, , (W *!, w*) < o*Fp(wP, w*), Vk.
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4. Linear Convergence of RPDC under Global Strong Metric

Subregularity
Theorem 3 (linear convergence of RPDC) Lemma 3
Er, o(wh, w*) < ofo(w, w*), Vk P(w, w*) > dy||w — w|?
[ I
'
B Wk — we|| < (@), with 1= /20,

Corollary 1
(R-linear convergence of {E r, wk})

Corollary (R-linear rate of {Ex, wk})

The sequence {Er, wk} converges to the desired saddle point w* at R-linear rate; i.e.,

lim sup {/||Ex, wk — w*|| = /o
k— o0
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5. Numerical Analysis: SVM

SVM i uTQu-1Tu
VM B 2 n

st.  yTu=0
KKT mapping of (SVM):

H(w) = ( fg;1"+Py+Nm,c}"(U) )

Proposition

Assume there exists at least one component uy of optimal solution u* that satisfies 0 < u < c.
Then the KKT mapping for SVM is global strong metric subregular.

Piecewise linearly of H(w) Q is positive-definite There exists u;" satisfies 0 < uf" < ¢
(zheng & Ng, 2014)] v v
Global metric subregularity of H(w) Uniqueness u™ Uniqueness p™*
L I I
Y

Global strong metric subregularity of H(w)
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5. Numerical Analysis: SVM

(c) ||wk — w*| value (d) Suboptimality (e) Feasibility

Figure: Number of blocks, ||w* — w*|| value, suboptimality, and feasibility with respect to
iteration count
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5. Numerical Analysis: SVM

(2-2) Computation time per ieration

(a) Comparison on heart_scale

(b-1) Suboptimality and feasibility versus iteration count 16200 ° (b-2) Computation time per iteration

u
12
5.
Zos

g
Zos
0s
0z

Y
10 o
s os ; T 2 HerAL w0 "o

(b) Comparison on ionosphere_scale

Figure: Comparison among RPDC with N = 2, APP-AL and RCD (NeGoara & Patrascu,2014)
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5. Numerical Analysis: MLP

(MLP) min  1uTXu+ A]ully
ueR"
s.t. plu=p
1u=1
Tu+ A|lulls + pi1n + pape
The KKT mapping of MLP: H(w) = wlu—p
1 u—-1

Proposition

Assume there exists at least two component u;* and u?* for optimal solution u* that satisfy
ur #0, uj* # 0; and p; # ;. Then the KKT mapping for MLP is global strong metric subregular.

Piecewise linearly of H(w) ¥ is positive-definite | | There exists uj* and u" satisfy ui* # 0, U # 0
(Zheng & Ng, 2014){ ¢ ¢
Global metric subregularity of H(w) Uniqueness u™ Uniqueness p*
L 1 I
v

Global strong metric subregularity of H(w)
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5. Numerical Analysis: MLP

(a4)$P500 - (6-4)5P500 - (c-4)3P500

(@) |wk — w*|| value (b) Suboptimality (c) Feasibility

Figure: Number of blocks, ||w* — w*|| value, suboptimality, and feasibility with respect to
iteration count
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6. Conclusions

This paper proposed a randomized coordinate extension of the first-order primal-dual method
proposed by Cohen & Zhu, 1984 and Zhao & Zhu, 2019 to solve LCCP.

(i) We established almost surely convergence and expected O(1/t) convergence rate for the
general convex case.

(ii) Under global strong metric subregularity condition, we establish the expected linear
convergence of RPDC.

(iii) SVM and MLP problems satisfy global strong metric subregularity under some reasonable
conditions.

We also discussed the implementation details of RPDC and present numerical experiments on
SVM and MLP problems to verify the linear convergence.

Future study will consider RPDC for nonlinearly constrained nonconvex and nonsmooth
optimization.
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For More Details and Results

Contact me by e-mail: l.zhao@sjtu.edu.cn
Download slides: https://drive.google.com/file/d/
1SFt0t jVhyUx_rl1fIGX0RsaSFOgvff3Ft/view?usp=sharing
THANK YOU FOR YOUR ATTENTION!
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