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K-demand agents and
demand sets

k-demand agent: demands a set of items
of size <=k maximizing her utility, I.e.,
total value - total price

demand set: the set of items the agent
demands



Unit-demand agents

value: $10 $12 $8
price: $6 $5 $5
surplus: $4 $7 $3

agent buys: X v X



K-demand agents and
demand sets

value: $5 $6 $4 $3
price: $4 $3 $2 $2

agent is 2-demand — they want no more than 2 items




K-demand agents and
demand sets

value: $5 $6 $4 $3

price: $4 $3 $2 $2

surplus: $1 $3 $2 $1
2-demand

agent buys:



K-demand agents and
demand sets

\ demand set )
value: $5 $6 $4 $3
price: $4 $3 $2 $2
surplus: $1 $3 $2 $1
2-demand X v, v, X

agent buys:



Demanda qgueries

demand query: given a vector of
prices, returns a demand set
(which may not be unique)
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price:
2-demanad
agent buys:

price:
2-demand
agent buys:

01 = $2
v




value:

price:
2-demand X , v X
agent buys:

price: 01 = $2 D2 = $5 03=%$3 ps=3%15
2-demand v X X Y
agent buys:

price: 01=%7 p2=9%35 p3=%55 ps=3%4
2-demand X
agent buys:



Actively learning the
valuations

suppose there are n items, and the value v; of each
item Is an integer between 1 and W

how many demand queries suffice to learn the full
valuations (i.e., (vi)i) of a k-demand agent?

spoiler: optimal number of queries Is

(nlogW)/(klog(n/Kk))+n/k=+o0o(...)



Sketch of lower bound

( )/ ( )+n/k=xo(..)



Sketch of lower bound

(nlog W)/ (klog (n/k)) + + O(...)



Sketch of upper bound

e warmup: n =Kk =1
 need to learn: a single number v1in {1, 2, ..., W}
e query: given p, returns whether p < v+

e optimal solution: binary search — log W queries



Sketch of upper bound

slight generalization: n = k {=H

need to learn: a vector (vi)i of integersin {1, 2, ..., W}

query: given (pi);, returns, for each item i, whether pi < vi

optimal solution: simultaneous binary search — log W

gueries



Sketch of upper bound

general case:n >k > 1

straightforward solution: (1) divide items into groups of
size kK, and (2) perform simultaneous binary search tor
each group sequentially

(n/ k) log W queries

LB is (nlog W) / (k ) — can we do better?



Sketch of upper bound

iIdea: blased binary search

e |earn vi using log W queries, use item 1 as reference

* In each query, post p1 =v1-0.5, soitem 1 is marginally

attractive

e for all other items, post biased (rather than middle-ot-

possible-range) prices
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Sketch of upper bound

item 1 item 2 item 3 item 4

prices biased toward higher
end of possible ranges



Sketch of upper bound

e ifitem 1 in demand set: many items are overpriced;

shrink their possible ranges by a little

e if item 1 not in demand set: a few items are underpriced,

shrink their possible ranges by a lot



Sketch of upper bound
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if item 1 In demand set: many items are overpriced; shrink
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Sketch of upper bound

e adjust bias to equalize information gain

e |arger information gain (~ k log (n / k)) in both cases!



e 5o far: tight UB & LB for active learning

* next: (very brief discussion of)
computation & sample efficient algorithm
for passive learning




Passively learning valuations

prices are distributed according to a distribution &

true valuations v: a vector of real numbers

algorithm observes m iid sample price vectors p!

together with demand set SJ under p!

given {(S), p))}, algorithm outputs a hypothesis vector h

which recovers v in a PAC sense — algorithm succeeds

with probability 1 - 6, in which case with probabillity 1 - &,

demand set under (v, p) = demand set under (h, p)



Passively learning valuations

idea: empirical risk minimization
tool: multiclass ERM principle & Natarajan dimension
treat problem as multiclass classification with < nk labels

hypothesis class has Natarajan dimension n

sample complexity is poly(n, k, log(1/6), 1/ ¢)

solving ERM = finding a feasible solution to an LP



Future directions

* more general valuations, e.g., matroid-demand

e tighter sample complexity bounds for passive learning



Thanks for your attention!

Questions?



Related research

* In economic theory: learning utility functions from
revealed preferences (Samuelson, 1938; Afriat, 1967;
Beigman & Vohra, 2006; ...)

e In CS: preference elicitation (Blum et al., 2004; Lahaie
& Parkes, 2004; Sandholm & Boutilier, 2006; ...)



