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this talk: 

• optimal (up to lower order terms) algorithm 
for actively learning the valuations of a k-
demand agent 

• algorithm with polynomial time & sample 
complexity for passively learning the 
valuations of a k-demand agent



k-demand agent: demands a set of items 
of size <=k maximizing her utility, i.e., 

total value - total price 
!

demand set: the set of items the agent 
demands

k-demand agents and 
demand sets



Unit-demand agents

value:

price:

$10 $12 $8

$6 $5 $5

surplus: $4 $7 $3

agent buys: ✘ ✔ ✘



k-demand agents and 
demand sets

value:

price:

$5 $6 $4 $3

$4 $3 $2 $2

agent is 2-demand — they want no more than 2 items



k-demand agents and 
demand sets

value:

price:

$5

surplus:
2-demand 

agent buys:

$6 $4 $3

$4 $3 $2 $2

$1 $3 $2 $1

✘ ✔ ✔ ✘



k-demand agents and 
demand sets

value:

price:

$5

surplus:
2-demand 

agent buys:

$6 $4 $3

$4 $3 $2 $2

$1 $3 $2 $1

✘ ✔ ✔ ✘

demand set



Demand queries

demand query: given a vector of 
prices, returns a demand set 
(which may not be unique)



value:

price:

v1 = $5

2-demand 
agent buys:

v2 = $6 v3 = $4 v4 = $3

p1 = $4 p2 = $2 p3 = $2 p4 = $2

✘ ✔ ✔ ✘



value:

price:
2-demand 

agent buys:

p1 = $4 p2 = $2 p3 = $2 p4 = $2

✘ ✔ ✔ ✘

price:
2-demand 

agent buys:

p1 = $2 p2 = $5 p3 = $3 p4 = $1.5

✔ ✘ ✘ ✔

v1 = $5 v2 = $6 v3 = $4 v4 = $3



value:

price:
2-demand 

agent buys:

p1 = $7 p2 = $3.5 p3 = $5.5 p4 = $4

✘ ✔ ✘ ✘

price:
2-demand 

agent buys:

p1 = $4 p2 = $2 p3 = $2 p4 = $2

✘ ✔ ✔ ✘

price:
2-demand 

agent buys:

p1 = $2 p2 = $5 p3 = $3 p4 = $1.5

✔ ✘ ✘ ✔

v1 = $5 v2 = $6 v3 = $4 v4 = $3



Actively learning the 
valuations

• suppose there are n items, and the value vi of each 
item is an integer between 1 and W 

• how many demand queries suffice to learn the full 
valuations (i.e., (vi)i) of a k-demand agent? 

• spoiler: optimal number of queries is 

(n log W) / (k log (n / k)) + n / k ± o(…)



(n log W) / (k log (n / k)) + n / k ± o(…)

Sketch of lower bound

amount of 
information  

encoded in (vi)i

maximum amount 
of information  

per query



(n log W) / (k log (n / k)) + n / k ± o(…)

necessary in the following case: 
• exactly one item is special, which has value 0 
• all other items have value 1 
• the special item is chosen uniformly at random

Sketch of lower bound



Sketch of upper bound

• warmup: n = k = 1 

• need to learn: a single number v1 in {1, 2, …, W} 

• query: given p, returns whether p < v1 

• optimal solution: binary search — log W queries



Sketch of upper bound
• slight generalization: n = k (= 1) 

• need to learn: a vector (vi)i of integers in {1, 2, …, W} 

• query: given (pi)i, returns, for each item i, whether pi < vi 

• optimal solution: simultaneous binary search — log W 

queries



Sketch of upper bound
• general case: n ≥ k ≥ 1 

• straightforward solution: (1) divide items into groups of 

size k, and (2) perform simultaneous binary search for 

each group sequentially 

• (n / k) log W queries 

• LB is (n log W) / (k log (n / k)) — can we do better?



Sketch of upper bound
idea: biased binary search 

• learn v1 using log W queries, use item 1 as reference 

• in each query, post p1 = v1 - 0.5, so item 1 is marginally 

attractive 

• for all other items, post biased (rather than middle-of-

possible-range) prices



Sketch of upper bound
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k = 1
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Sketch of upper bound

0
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100

item 1 item 2 item 3 item 4

p1 = v1 - 0.5

p2
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n = 4 
k = 1

prices biased toward higher 
end of possible ranges



Sketch of upper bound
• in each query, post p1 = v1 - 0.5, so item 1 is marginally 

attractive 
• for all other items, post biased (rather than middle-of-

possible range) prices 
• if item 1 in demand set: many items are overpriced; 

shrink their possible ranges by a little 
• if item 1 not in demand set: a few items are underpriced; 

shrink their possible ranges by a lot



Sketch of upper bound
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if item 1 in demand set: many items are overpriced; shrink 
their possible ranges by a little



Sketch of upper bound
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Sketch of upper bound
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Sketch of upper bound
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Sketch of upper bound
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Sketch of upper bound
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Sketch of upper bound

• if item 1 in demand set: many items are overpriced; 
shrink their possible ranges by a little 

• if item 1 not in demand set: a few items are underpriced; 
shrink their possible ranges by a lot 

• adjust bias to equalize information gain 
• larger information gain (~ k log (n / k)) in both cases!



• so far: tight UB & LB for active learning 

• next: (very brief discussion of) 
computation & sample efficient algorithm 
for passive learning



Passively learning valuations
• prices are distributed according to a distribution 𝒟 

• true valuations v: a vector of real numbers 
• algorithm observes m iid sample price vectors pj 

together with demand set Sj under pj 
• given {(Sj, pj)}, algorithm outputs a hypothesis vector h 

which recovers v in a PAC sense — algorithm succeeds 

with probability 1 - 𝛿, in which case with probability 1 - 𝛆, 

demand set under (v, p) = demand set under (h, p)



Passively learning valuations

• idea: empirical risk minimization 
• tool: multiclass ERM principle & Natarajan dimension 
• treat problem as multiclass classification with < nk labels 
• hypothesis class has Natarajan dimension n 

• sample complexity is poly(n, k, log(1 / 𝛿), 1 / 𝛆) 

• solving ERM = finding a feasible solution to an LP



Future directions

• more general valuations, e.g., matroid-demand 

• tighter sample complexity bounds for passive learning



Thanks for your attention!
Questions?



• in economic theory: learning utility functions from 
revealed preferences (Samuelson, 1938; Afriat, 1967; 
Beigman & Vohra, 2006; …) 

• in CS: preference elicitation (Blum et al., 2004; Lahaie 
& Parkes, 2004; Sandholm & Boutilier, 2006; …)

Related research


