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Motivations

One fundamental problem in deep learning is understanding the outstanding performance of
Deep Neural Networks (DNNs) in practice.

Expressivity of DNNs: DNNs have the ability to approximate or represent a rich class of
functions.

Cybenko and Hornik-Stinchcombe-White (1989): A sigmoid neural network with one hidden
layer and an arbitrarily large width can approximate any integrable function with arbitrary
precision.

Hanin-Sellke and Lu et al. (2017): A ReLU deep network of fixed width (determined by n) and
arbitrarily large depth can approximate a given continuous function f : [0, 1]n → R with
arbitrary precision.
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Piecewise Linear Functions Represented by ReLU DNNs

The functions represented ReLU DNNs ⊆ Piecewise linear functions.

Piecewise linear functions can be used to approximate given functions.

The more pieces, the more powerful expressivity.

The maximal number of pieces (also called linear regions) in piecewise linear functions that a
ReLU DNN can represent is a metric of the expressivity of ReLU DNNs.

Definition
RN ,θ : the number of linear regions of a neural network N with the parameters θ.

RN = maxθ RN ,θ : the maximal number of linear regions of N when θ ranges over
R#weights+#bias.

Question
How to calculate the number RN for a given DNN architecture N?

Huan Xiong Number of Linear Regions for CNNs ICML 2020 3 / 10



The Maximal Number of Linear Regions for DNNs

Question
How to calculate the number RN of linear regions for a given DNN architecture N?

Pascanu-Montúfar-Bengio (2013): RN =
∑n0

i=0

(n1
i

)
for a one-layer fully-connected ReLU

network N with n0 inputs and n1 hidden neurons.

The basic idea is translating this problem to a counting problem of regions of hyperplane
arrangements in general position, then directly applying Zaslavsky’s Theorem (Zaslavsky,
1975), which says that the number of regions for a hyperplane arrangement in general
position with n1 hyperplanes over Rn0 is equal to

∑n0
i=0

(n1
i

)
.

Montúfar-Pascanu-Cho-Bengio (2014): RN ≥
(∏L−1

l=0

⌊
nl
n0

⌋n0
)∑n0

i=0

(nL
i

)
for a fully-connected

ReLU network with n0 inputs and L hidden layers of widths n1, n2, . . . , nL.

Montúfar (2017): RN ≤
∏L

l=1
∑ml

i=0

(nl
i

)
where ml = min{n0, n1, n2, . . . , nl−1}.

Based on these results, they concluded that deep fully-connected ReLU NNs have
exponentially more maximal linear regions than their shallow counterparts with the same
number of parameters.

Bianchini-Scarselli (2014); Telgarsky (2015); Poole et al. (2016); Raghu et al. (2017); Serra et
al. (2018); Croce et al. (2018); Hu-Zhang (2018); Serra-Ramalingam (2018); Hanin-Rolnick
(2019).
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The Number of Linear Regions for ReLU CNNs

Question
How to calculate the number RN of linear regions for a given DNN architecture N?

Most known results are about fully-connected ReLU NNs. What happens to CNNs?

Difficulty for CNN case: the corresponding hyperplane arrangement is not in general position.
Therefore, mathematical tools such as Zaslavsky’s Theorem cannot be directly applied.

Our main Contribution: we establish new mathematical tools needed to study hyperplane
arrangements arisen in CNN case (which are not in general position) , and use them to derive
upper and lower bounds on the maximal number of linear regions for ReLU CNNs.

Based on these bounds, we show that deep ReLU CNNs have more expressivity than their
shallow counterparts, and deep ReLU CNNs have more expressivity than deep ReLU
fully-connected NNs per parameter, under some mild assumptions.
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Main Result on the Number of Linear Regions for One-Layer CNNs

Theorem 1

Assume that N is a one-layer ReLU CNN with input dimension n(1)
0 × n(2)

0 × d0 and hidden layer

dimension n(1)
1 × n(2)

1 × d1. The d1 filters have the dimension f (1)
1 × f (2)

1 × d0 and the stride s1.

Define IN = {(i, j) : 1 ≤ i ≤ n(1)
1 , 1 ≤ j ≤ n(2)

1 } and

Si,j = {(a + (i− 1)s1, b + (j− 1)s1, c) : 1 ≤ a ≤ f (1)
1 , 1 ≤ b ≤ f (2)

1 , 1 ≤ c ≤ d0} for each
(i, j) ∈ IN . Let

KN := {(ti,j)(i,j)∈IN : ti,j ∈ N,
∑

(i,j)∈J

ti,j ≤ # ∪(i,j)∈J Si,j ∀J ⊆ IN }.

(i) The maximal number RN of linear regions of N equals

RN =
∑

(ti,j)(i,j)∈IN ∈KN

∏
(i,j)∈IN

(d1

ti,j

)
.

(ii) Moreover, Suppose that the parameters θ are drawn from a fixed distribution µ which has
densities with respect to Lebesgue measure in R#weights+#bias. Then the above formula also
equals the expectation Eθ∼µ[RN ,θ].
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Main Result on the Number of Linear Regions for One-Layer CNNs

Outline of the Proof of Theorem 1
First, we translate the problem to the calculation of the number of regions of some specific
hyperplane arrangements which may not be in general position.

Next, we derive a generalization of Zaslavsky’s Theorem with techniques from combinatorics
and linear algebra, which can be used to calculate the number of regions of a large class of
hyperplane arrangements.

Finally, we show that the hyperplane arrangement corresponding to the CNN satisfies the
condition of the above generalization of Zaslavsky’s Theorem, thus the RN and Eθ∼µ[RN ,θ]
can be derived.

Asymptotic Analysis

Let N be the one-layer ReLU CNN defined in Theorem 1. Suppose that n(1)
0 , n(2)

0 , d0, f
(1)
1 , f (2)

1 , s1
are some fixed integers. When d1 tends to infinity, the asymptotic formula for the maximal number

of linear regions of N behaves as RN = Θ(d
#∪(i,j)∈IN Si,j

1 ) asymptotically. Furthermore, if all input
neurons have been involved in the convolutional calculation, i.e.,
∪(i,j)∈IN Si,j = {(a, b, c) : 1 ≤ a ≤ n(1)

0 , 1 ≤ b ≤ n(2)
0 , 1 ≤ c ≤ d0}, we have

RN = Θ(d
n(1)

0 ×n(2)
0 ×d0

1 ).
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Main Result on the Bounds of Multi-Layer CNNs

Theorem 2
Suppose that N is a ReLU CNN with L hidden convolutional layers. The input dimension is
n(1)

0 × n(2)
0 × d0; The l-th hidden layer has dimension n(1)

l × n(2)
l × dl for 1 ≤ l ≤ L; and there are dl

filters with dimension f (1)
l × f (2)

l × dl−1 and stride sl in the l-th layer. Assume that dl ≥ d0 for each
1 ≤ l ≤ L. Then, we have
(i) The maximal number RN of linear regions of N is at least (lower bound)

RN ≥ RN ′
L−1∏
l=1

⌊
dl

d0

⌋n(1)
l ×n(2)

l ×d0

,

where N ′ is a one-layer ReLU CNN which has input dimension n(1)
L−1 × n(2)

L−1 × d0, hidden layer

dimension n(1)
L × n(2)

L × dL, and dL filters with dimension f (1)
L × f (2)

L × d0 and stride sL.
(ii) The maximal number RN of linear regions of N is at most (upper bound)

RN ≤ RN ′′
L∏

l=2

n(1)
0 n(2)

0 d0∑
i=0

(n(1)
l n(2)

l dl

i

)
,

where N ′′ is a one-layer ReLU CNN which has input dimension n(1)
0 × n(2)

0 × d0, hidden layer

dimension n(1)
1 × n(2)

1 × d1, and d1 filters with dimension f (1)
1 × f (2)

1 × d0 and stride s1.
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Expressivity Comparison of Different Network Architectures

Theorem 3

Let N1 be an L-layer ReLU CNN in Theorem 2 where f (1)
l , f (2)

l = O(1) for 1 ≤ l ≤ L, and
d0 = O(1). When d1 = d2 = · · · = dL = d tends to infinity, we obtain that N1 has Θ(Ld2)
parameters, and the ratio of RN1 to the number of parameters of N1 is

RN1

# parameters of N1
= Ω

( 1
L
·
⌊

d
d0

⌋d0
∑L−1

l=1 n(1)
l n(2)

l −2)
.

For a one-layer ReLU CNN N2 with input dimension n(1)
0 × n(2)

0 × d0 and hidden layer dimension

n(1)
1 × n(2)

1 × Ld2, when Ld2 tends to infinity, N2 has Θ(Ld2) parameters, and the ratio for N2 is

RN2

# parameters of N2
= O

((
Ld2
)d0n(1)

0 n(2)
0 −1

)
.

Based on the bounds obtained, we show that deeper ReLU CNNs have exponentially more
linear regions per parameter than their shallow counterparts under some mild assumptions.
This means that deeper CNNs have more powerful expressivity than shallow ones and thus
provides some hints on why CNNs normally perform better as they get deeper.

We also show that ReLU CNNs have more expressivity than fully-connected ReLU DNNs with
asymptotically the same number of parameters, input dimension and number of layers.
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Some Future Directions

ReLU CNNs with pooling layers?

We have obtained the expectation of RN ,θ for a one-layer ReLU CNN N and some general
distribution µ of parameters θ. It would be interesting to explore similar formulas and bounds
of the expectation of RN ,θ for multi-layer ReLU CNNs.

Another direction related to RN ,θ is to study the influence of different parameters θ. When θ is
replaced by some θ+ ∆θ, what is the relation between RN ,θ and RN ,θ+∆θ? These problems
are related to the changing number of linear regions for CNNs during training process.
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