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Clinician-in-the-Loop Decision-Making:

Reinforcement Learning with Near-Optimal Set-Valued Policies
Shengpu Tang et al., ICML 2020.
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Reinforcement Learning (RL)
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Temporal Difference learning

Q(S, CL) < Q(S, Cl) + a[Qtarget(Saa) - Q(S? CL)]
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Near-greedy action selection
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Clinical Task
Sepsis Treatment in ICUs

/ Patient health state \ / Treatment actions \

Dose of vasopressor

5 |
67|89 /10
11 /12|13 14|15

4

Dose of i.v. fluid

\

Komorowski, Matthieu, et al. "The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care

19 20
21|22 23@ /

." Nature Medicine 24.11 (2018): 1716.
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Similar IV fluid doses are near-equivalent
when no vasopressors are used.

Optimal
action
100%
% time of being
considered a
near-equivalent
action
35%
20%
° 16%
0 <500mL 500mL-1L 1L-2L

Doses of |V fluids
in each 4 hour window
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We propose a new algorithm for learning near-optimal set-valued policies,
which can provide action choices while maintaining near-optimality

An important step for clinician/human-in-the-loop decision support
Humans incorporate additional knowledge to select among near-equivalent actions
® Potential broader impact to other applications beyond healthcare
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UNIVERSITY OF MICHIGAN & ENGINEERING

UNIVERSITY OF MICHIGAN
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Decision-Making in Healthcare

Matching
patients to
the right
treatment
at the right
time.

Data-driven
methods
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Reinforcement Learning for Healthcare
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Motivation: Near-equivalent actions

E Action1 | > 90.0% survival + expensive
am .

= Action2 | > 90.1% survival + side effects
{ Action3 | > 89.1% survival + invasive

e Many actions could be near-equivalent with respect to survival but differ otherwise
e Challenging to quantify a single reward that captures different goals for different individuals

e Impractical to incorporate all aspects at training time
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Our Goal: Learn a mapping from each state to a set of near-equivalent actions.
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Why is this challenging?

The sequential nature of decisions makes learning such policies non-trivial

Learning agent should consider actions as near-equivalent only if these actions are
® both similar in the short term (instantaneous reward)

e and similar for any possible future trajectory (expected cumulative returns)
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Previous work on learning set-valued policies

Fard & Pineau (2011) Existing approach does not apply to more
proposed a model-based solution for complex settings (e.g., clinical applications)
finite-horizon planning, formulated as a

mixed-integer program We aim to develop an approach that:

® requires knowledge of the MDP model e applies in model-free settings
e exhaustive search over all (s,a) pairs ® can be solved efficiently

Fard, M. M., & Pineau, J. (2009). MDPs with non-deterministic policies. In Advances in Neural Information Processing Systems (pp. 1065-1072).
Fard, M. M., & Pineau, J. (2011). Non-deterministic policies in Markovian decision processes. Journal of Artificial Intelligence Research, 40, 1-24.
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Our Contributions

We propose a new algorithm for learning near-optimal set-valued policies
that can support clinician/human-in-the-loop decision-making

Provide theoretical analyses that prove convergence in directed acyclic graphs (DAG)
Demonstrate empirical behavior across synthetic environments including non-DAGs

e Show that the algorithm discovers meaningful action near-equivalencies on
a clinical task of sepsis treatment

M Tang et al., “Clinician-in-the-Loop RL”, ICML 2020.




Problem Setting & Notation

ﬁ Markov Decision Process (S, A, P, R, )
| Agent
'LJ e S : state space
state reward action
St Ty a e A : action space
T
<] Environment ]4 e P:Sx AxS —10,1] transition model

e R:S x A— R rewardfunction

(from Sutton & Barto’s RL book pg 48) .
P8 e v €[0,1] discount factor

Trajectory  So,@o,71,51,0Q1,72, S2,02,73, . ..

Return Go=T1+77‘2+”y27“3+---=2’yt7‘t+1
t=0

Optimal value function V*
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Set-Valued Policy & Worst-Case Value Functions

SVP
S — 24\ {o}
/ L )

V7(s) = min {Q"(s,a)}

acm(s)

Q" (s,a) =7(s,a)+yE min {Q7(s',a’)}

state non-empty set of actions a E?T(S )

Considers a worst-case analysis

Fard, M. M., & Pineau, J. (2009). MDPs with non-deterministic policies. In Advances in Neural Information Processing Systems (pp. 1065-1072).
Fard, M. M., & Pineau, J. (2011). Non-deterministic policies in Markovian decision processes. Journal of Artificial Intelligence Research, 40, 1-24.
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Near-optimality: multiplicative constraint

Requires V*(s) > 0 Vs

0 Z 1
| sub-optimality margin |
- >
optimality ‘ action choices

user-specified

Fard, M. M., & Pineau, J. (2009). MDPs with non-deterministic policies. In Advances in Neural Information Processing Systems (pp. 1065-1072).
Fard, M. M., & Pineau, J. (2011). Non-deterministic policies in Markovian decision processes. Journal of Artificial Intelligence Research, 40, 1-24.
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Given ¢, learn an SVP m that satisfies near-optimality.

Vis) > (1=()V(s), Vs €S8

Trivial Solution: equivalent to the greedy optimal policy,

n(s) = {"(s)}

— We want to learn m to recommend more actions when possible
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Key Idea

Standard RL setup: An optimal policy is a fixed-point solution to the following equation

Optimal value function

A

A Y

Vs € S, m*(s) = arg max Q”*(s, a)

\ J
Y

Greedy action selection

“an optimal policy is greedy with respect to its own Q-function”
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Key Idea: Near-greedy heuristic

For set-valued policies: We formulate a similar equation and seek the fixed-point solution

Worst-case value
of SVP it

A

Vs e S, n(s)=1{a :IQ”(S,aj > (1-=0)V*(s)}

\ J
Y

Near-greedy
action selection

“a near-optimal SVP should be near-greedy with respect to its Q-function”
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Learning near-greedy SVPs

Vs e S, n(s)={a:Q"(s,a) > (1 -V (s)}

Using this equation to modify the Bellman backup, we can derive a family of value-based
algorithms for learning SVPs :

policy iteration - near-greedy policy iteration

value iteration - near-greedy value iteration

model-free

-learnin near-greedy TD-learnin
[ a 8~ & Y & ] function approximator

etc.

*see paper for details
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Theoretical analyses

Vse S, m(s)={a:Q"(s,a) > (1 -V (s)}
o The modified Bellman update operator is generally not a contraction

e Thm 1:If MDP is a DAG with non-negative rewards, then the near-greedy (-optimal
SVP exists and is unique.

e Thm 2: If MDP is a DAG with non-negative rewards, then “near-greedy TD-learning”

converges to the unique solution, under the same convergence conditions for Q-
learning.

M Tang et al., “Clinician-in-the-Loop RL”, ICML 2020.




* Please refer to our paper for other experiments & results

1. Empirical behavior on non-DAG environments (FrozenLake)
O can converge to non-trivial solutions
2. Application to a real clinical problem (MIMIC-sepsis)

o discovers meaningful near-equivalencies among actions

M Tang et al., “Clinician-in-the-Loop RL”, ICML 2020.




1. Empirical behavior on non-DAG

e Gridworld
S o Task: get from S to G without falling into

o Actions: M J &>
B

. ® Base reward
o +1 for transition to G

O 0 otherwise
G

® Reward modifiers
FrozenLake-8x8 _ _ ,
to induce near-equivalent actions
O Randomly sampled from

Brockman et al. Openai Gym. arXiv:1606.01540, 2016. {OOO 1, 0002, 0003, 0004}

https://gym.openai.com/envs/FrozenLake-v0/

M Tang et al., “Clinician-in-the-Loop RL”, ICML 2020.
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1. Empirical behavior on non-DAG

=0.00 Avg. policy size: 1.00 (=0.01 Avg. policy size: 1.25 (=0.03 Avg. policy size: 1.42

Despite a lack of theoretical guarantees for non-DAGs,
the proposed algorithm can converge to useful solutions.

M Tang et al., “Clinician-in-the-Loop RL”, ICML 2020.




2. Clinical task

*see paper for details

MIMIC-sepsis * (Komorowski 2018)

Goal: learn optimal treatment strategies for patients with sepsis in the ICU

e State space: derived from 48 physiological signals at 4h timesteps

® Action space: 25 treatment options, (5 vasopressor doses) x (5 intravenous fluids)
e Reward: survival (+100) vs death (-100)

e y=0.99

For illustration, we visualize action near-equivalencies at { = 0.05

Komorowski, Matthieu, et al. "The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care." Nature Medicine 24.11 (2018): 1716.
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2. Clinical task - Visualizing action near-equivalencies
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Vasopressor dose (ug/kg/min)

Note: The red numbers indicate how often
that action is considered optimal by the
learned policy over all states in the test set.
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2. Clinical task - Visualizing action near-equivalencies
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Note: Interpretation of results was conducted together .
P 8 Vasopressor dose (ug/kg/min)

with a critical care physician, Dr. Michael W. Sjoding,
who treats patients with sepsis
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2. Clinical task - Visualizing action near-equivalencies

Normalized
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2. Clinical task - Visualizing action near-equivalencies
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When a low dose of IV fluids is
used, similar doses of vasopressors
considered near-equivalent




2. Clinical task - Visualizing action near-equivalencies
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Possibly very sick states,
where “do-nothing” and
“do-everything” could lead
to similarly bad outcomes




2. Clinical task - Visualizing action near-equivalencies
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The proposed algorithm uncovers clinically meaningful near-equivalencies
in terms of treating patients with sepsis.
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We propose a new algorithm for learning near-optimal set-valued policies,
which can provide action choices while maintaining near-optimality

An important step for clinician/human-in-the-loop decision support
Humans incorporate additional knowledge to select among near-equivalent actions
® Potential broader impact to other applications beyond healthcare
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