

Fabian Pedregosa (Google Research)

Damien Scieur (Samsung SAIT AI Lab, Montréal)

International Conference on Machine Learning 2020

Google Research

SAMSUNG

Advanced Institute of Technology Al Lab Montreal

Complexity Analysis in Optimization

Worst-case analysis

- Bound on the complexity for any input.
- X Potentially worse than observed runtime.

Simplex method (Dantzig, '98, Spielman & Teng '04)

- X Exponential worst-case.
- Runtime typically polynomial.

Average-case Complexity

- Complexity averaged over all problem instances.
- Representative of the typical complexity.

Better bounds, sometimes better algorithms

→ Quicksort (Hoare '62): Fast average-case sorting

Rarely used in optimization

Main contributions

Average-case analysis for optimization on quadratics.

Optimal methods under this analysis.

Problem Distribution: Random Quadratics

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \Big\{ f(\boldsymbol{x}) \stackrel{\text{def}}{=} \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}^{\star})^{\top} \boldsymbol{H} (\boldsymbol{x} - \boldsymbol{x}^{\star}) \Big\},$$

where H, x^* are random matrix, vector.

- ✓ exact runtime known depends on eigenvalues(H).
- ✓ shares (some) dynamics of real problems, e.g., Neural Tangent Kernel
 (Jacot et al., 2018).

Example: Random Least Squares

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{A}oldsymbol{x} - oldsymbol{b}\|^2, ext{ with } oldsymbol{b} = oldsymbol{A}oldsymbol{x}^\star$$

When elements of **A** are iid, standardized:

Spectrum of **H** will be close to

Marchenko-Pastur.

Expected Error For Gradient-Based Methods

$$ext{expected error} = \mathbb{E} \|oldsymbol{x}_t - oldsymbol{x}^\star\|^2 = \overbrace{R^2}^{ ext{initialization}} \int_{\mathbb{R}} \underbrace{P_t^2}_{ ext{algorithm}} \stackrel{ ext{problem}}{ ext{d}\mu}$$

 R^2 is the distance to optimum at initialization $\mathbb{E}\|oldsymbol{x}_0-oldsymbol{x}^\star\|^2$.

Problem difficulty represented by expected density Hessian eigenvalue du

 P_{t} is a polynomial of degree t determined from the optimization algorithm.

Flexible: algorithm design

Average-case Optimal Method

Goal: Find method with minimal expected error =

Algorithms ↔ **Polynomials**

Find **polynomial** P_t of degree t that minimizes expected error (with proper normalization).

Solution: Polynomial of degree t, orthogonal wrt to $\lambda d\mu(\lambda)$.

Marchenko-Pastur Acceleration

Model for $d\mu$ = Marchenko-Pastur(r, σ).

r and σ estimated from:

- Largest eigenvalue
- Trace of H

No need to know strong convexity constant.

Algorithm

$$oldsymbol{x}_t = oldsymbol{x}_{t-1} + \underbrace{a_t(r,\sigma)}_{ ext{momentum}} (oldsymbol{x}_{t-2} - oldsymbol{x}_{t-1}) + \underbrace{b_t(r,\sigma)}_{ ext{step-size}}
abla f(oldsymbol{x}_{t-1})$$

Simple momentum-like method, low memory requirements.

Google Research

Decaying Exponential Acceleration

Model for $d\mu$ = decaying exponential(λ_0).

Unbounded largest eigenvalue. Only access to Tr(**H**).

Algorithm

$$m{x}_t = m{x}_{t-1} + rac{t-1}{t+1} (m{x}_{t-1} - m{x}_{t-2}) - rac{\lambda_0}{t+1}
abla f(m{x}_{t-1})$$

- Decaying step-size - Similar to Polyak averaging

Benchmarks: Least Squares

Conclusions

Average-case analysis based on random quadratics.

Optimal methods under different eigenvalue distribution.

✓ Acceleration without knowledge of strong convexity.

In paper

+ More methods, convergence rates, empirical extension to non-quadratic objectives.

Follow-up work on asymptotic analysis

(Scieur and P., "Universal Average-Case Optimality of Polyak Momentum")