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Outline

Motivation: Obtain a practical, fast version of Stochastic

Frank-Wolfe.

1. Frank-Wolfe algorithm. What is it and when is it used?

2. Stochastic Frank-Wolfe. Making Stochastic Frank-Wolfe

practical: a primal-dual view.
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The Frank-Wolfe algorithm



Frank-Wolfe: What is it?

Problem: smooth f , compact and convex D

arg min
x∈D

f (x)

Algorithm 1: Frank-Wolfe (FW)

1 for t = 0, 1 . . . do

2 st ∈ arg mins∈D〈∇f (x t), s〉
3 Find step-size γt .

4 x t+1 = (1− γt)x t + γtst

Figure 1: One step of

the FW algorithm
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Frank-Wolfe: When do we use it?

• Projection-free. Linear subproblems vs. quadratic for

projected gradient descent (PGD).

min
x∈D

g>x vs. min
x∈D
‖y − x‖2

2

• Solution of linear subproblem: extremal element of D.

• Sparse representation: x t convex combination of at most t

elements.

Recent Applications

• Learning the structure of a neural network. Ping, Liu, and

Ihler, 2016

• Attention mechanisms that enforce sparsity. Niculae, 2018

• `1-constrained problems with extreme number of features.

Kerdreux, Pedregosa, and d’Aspremont, 2018

3/21



Frank-Wolfe: When do we use it?

• Projection-free. Linear subproblems vs. quadratic for

projected gradient descent (PGD).

min
x∈D

g>x vs. min
x∈D
‖y − x‖2

2

• Solution of linear subproblem: extremal element of D.

• Sparse representation: x t convex combination of at most t

elements.

Recent Applications

• Learning the structure of a neural network. Ping, Liu, and

Ihler, 2016

• Attention mechanisms that enforce sparsity. Niculae, 2018

• `1-constrained problems with extreme number of features.

Kerdreux, Pedregosa, and d’Aspremont, 2018

3/21



Frank-Wolfe: When do we use it?

• Projection-free. Linear subproblems vs. quadratic for

projected gradient descent (PGD).

min
x∈D

g>x vs. min
x∈D
‖y − x‖2

2

• Solution of linear subproblem: extremal element of D.

• Sparse representation: x t convex combination of at most t

elements.

Recent Applications

• Learning the structure of a neural network. Ping, Liu, and

Ihler, 2016

• Attention mechanisms that enforce sparsity. Niculae, 2018

• `1-constrained problems with extreme number of features.

Kerdreux, Pedregosa, and d’Aspremont, 2018

3/21



Frank-Wolfe: When do we use it?

• Projection-free. Linear subproblems vs. quadratic for

projected gradient descent (PGD).

min
x∈D

g>x vs. min
x∈D
‖y − x‖2

2

• Solution of linear subproblem: extremal element of D.

• Sparse representation: x t convex combination of at most t

elements.

Recent Applications

• Learning the structure of a neural network. Ping, Liu, and

Ihler, 2016

• Attention mechanisms that enforce sparsity. Niculae, 2018

• `1-constrained problems with extreme number of features.

Kerdreux, Pedregosa, and d’Aspremont, 2018 3/21



A practical issue for FW

• For large n (number of samples), we need a Stochastic variant

of FW

• Näıve SGD-like algorithm fails in practice and in theory

• State of the art bounds on suboptimality after t iterations:

O(n/t) and O(1/ 3
√
t)

Lu and Freund, 2020; Mokhtari, Hassani, and Karbasi, 2018

Can we do better?
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Practical Stochastic Frank-Wolfe:

a primal-dual point of view



Problem setting:

Let us add some structure: finite sum, and linear prediction

OPT : min
w∈C

1
n

n∑
i=1

fi (x>i w)

• fi (·) is the univariate loss function of observation/sample i for

i ∈ [n]

• n is the number of observations/samples

• C ⊂ Rd is a compact convex set

• d is the order (dimension) of the model variable w

The particular structural dependence of the losses on x>i w is a

model with “generalized linear structure” or “linear prediction”
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Deterministic FW: Gradient Computation for OPT

OPT

f ∗ := min
w∈C

F (w) = 1
n

n∑
i=1

fi (x>i w)

Assumptions

• fi (·) is L-smooth for i ∈ [n]: ∀z , z ′, |f ′i (z)− f ′i (z ′)| ≤ L|z − z ′|

• Linear Minimization Oracle LMO(r): s ← arg minw∈C 〈r ,w〉

Denote X := [x>1 ; x>2 ; . . . ; x>n ]

Gradient Computation

∇F (w) = 1
n

∑n
i=1 x i · f ′i (x>i w) = X>α where αi ← 1

n
f ′i (x>i w), i ∈ [n]

Gradient computation is O(nd) operations (expensive when n� 0 . . .)
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Frank-Wolfe for OPT:

OPT

f ∗ := min
w∈C

F (w) := 1
n

n∑
i=1

fi (x>i w)

Frank-Wolfe algorithm for OPT:

Initialize at w 0 ∈ C, t ← 0 .

At iteration t :

1. Compute ∇F (w t−1) :

• αi
t ← 1

n f
′
i (x>i w t−1) for EVERY i ∈ [n]

• r t = X>αt (= ∇F (w t−1))

2. Compute s t ← LMO(r t) .

3. Set w t ← w t−1 + γt(s t − w t−1), where γt ∈ [0, 1] .

Iteration cost is O(nd) operations (expensive when n� 0 . . . ) 7/21



A Näıve Frank-Wolfe (SFW) Strategy

OPT

f ∗ := min
w∈C

F (w) := 1
n

n∑
i=1

fi (x>i w)

Frank-Wolfe algorithm for OPT:

Initialize at w 0 ∈ C, t ← 0 .

At iteration t :

1. Compute ∇F (w t−1) :

• αi
t ← 1

n f
′
i (x>i w t−1) for ONE i ∈ [n] (αj

t = 0 for j 6= i)

• r t = X>αt

(
= x i f

′
i (x>i w t−1)

)
2. Compute s t ← LMO(r t) .

3. Set w t ← w t−1 + γt(s t − w t−1), where γt ∈ [0, 1] .

This approach does not work without growing the batch size [Hazan] 8/21



Our Frank-Wolfe (SFW) Strategy

OPT

f ∗ := min
w∈C

F (w) := 1
n

n∑
i=1

fi (x>i w)

Frank-Wolfe algorithm for OPT:

Initialize at w 0 ∈ C, t ← 0 .

At iteration t :

1. Compute ∇F (w t−1) :

• αi
t ← 1

n f
′
i (x>i w t−1) for ONE i ∈ [n] (αj

t = αj
t−1 for j 6= i)

• r t = X>αt

(
= r t−1 + x i (α

i
t −αi

t−1)
)

2. Compute s t ← LMO(r t) .

3. Set w t ← w t−1 + γt(s t − w t−1), where γt ∈ [0, 1] .

Iteration cost is O(d) operations! Memory cost is O(d + n) 9/21



Motivation: a Primal-Dual Lens for Constructing FW

Recall the definition of the conjugate of a function f :

f ∗(α) := max
x∈domf (·)

{α>x − f (x)}

• If f is a closed convex function, then f ∗∗ = f

• f (x) := maxα∈dom f ∗(·){α>x − f ∗(α)} , and

• When f is differentiable, it holds that

∇f (x)← α where α← arg max
β∈domf ∗(·)

{β>x − f ∗(β)} .
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Motivation: a Primal-Dual Lens for Constructing FW

Using conjugacy we can reformulate OPT as:

OPT: min
w∈C

f (Xw) = min
w∈C

max
α∈Rn

{
L(w ,α)

def
= 〈Xw ,α〉 − f ∗(α)

}
Given w t−1 we construct the gradient of f (Xw) at w t−1 by maximizing over

the dual variable α:

αt ∈ arg max
α∈Rn

{L(w t−1,α) = 〈Xw t−1,α〉 − f ∗(α)}

⇐⇒ ∇f (Xw t−1) = X>αt

Then the LMO step corresponds to fixing the dual variable and minimizing
over the primal variable w :

s t ← arg min
w∈C

{
L(w ,αt) = 〈w ,X>αt〉 − f ∗(αt)

}
⇐⇒ s t ← LMO(X>αt)
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Results: Practice and Theory



Experiments RCV1

Problem: `1-constrained logistic regression

arg min
‖x‖1≤α

1

n

n∑
i=1

ϕ(a>i x , bi ) with ϕ = logistic loss.

Dataset dimension #samples

RCV1 47236 20463
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Experiments MovieLens 1M

Problem: trace-norm constrained robust matrix completion

arg min
‖x‖∗≤α

1

|B|

n∑
(i ,j)∈B

h(X i ,j ,Ai ,j) with h = Huber loss.

Dataset dimension density Lt/L

MovieLens 1M 22,393,987 0.04 1.1× 10−2
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Theoretical guarantees: convex case

Define the `p norm “diameter” of C to be Dp := max
w,v∈C

‖X (w − v)‖p

Theorem: Computational Complexity of Novel Stochastic

Frank-Wolfe Algorithm

Let H0
def
= ‖α0 −∇f (Xw 0)‖1 be the initial error of the gradient ∇f , and let

the step-size rule be γt = 2
t+2

. For t ≥ 2, it holds that:

E[f (Xw t)− f ∗] ≤
2(f (Xw0)− f ∗)

(t + 1)(t + 2)

+
[
2LD2

2

(
1
n

)
+ 8LD1D∞

(
n−1
n

)] t

(t + 1)(t + 2)

+
(2D∞H0 + 64LD1D∞)n2

(t + 1)(t + 2)
.

Let us see what this bound is really about . . .
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Theoretical guarantees: convex case

`p norm “diameter” of C is Dp := maxw,v∈C ‖X (w − v)‖p

Define Ratio := D1/D∞ and note that Ratio ≤ n

The expected optimality gap bound is:

2(f (Xw0)− f ∗)

(t + 1)(t + 2)
+

[
2LD2

2

(
1

n

)
+ 8LD1D∞

(
n − 1

n

)](
1

t

)
+

(2D∞H0 + 64LD1D∞)n2

(t + 1)(t + 2)

= O

(
f (Xw0)− f ∗

t2

)
+ O

(
LD2
∞(1 + Ratio)

t

)
+ O

((
D∞H0 + LD2

∞Ratio
)(n2

t2

))

≤ O

(
LD2
∞Ratio

t

)
≤ O

(n

t

)
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Conclusion

• A practical, fast version of Stochastic Frank-Wolfe

• Hyperparameter-free

• Implementation available in

https://github.com/openopt/copt

• Use FW when the structure of your problem demands it!

Thanks for your attention
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