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Motivation: Obtain a practical, fast version of Stochastic
Frank-Wolfe.
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Motivation: Obtain a practical, fast version of Stochastic
Frank-Wolfe.

1. Frank-Wolfe algorithm. What is it and when is it used?

2. Stochastic Frank-Wolfe. Making Stochastic Frank-Wolfe
practical: a primal-dual view.

3. Results. Convergence rates in theory and in practice.
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The Frank-Wolfe algorithm




Frank-Wolfe: What is it?

Problem: smooth f, compact and convex D

arg min f(x)
x€D

Algorithm 1: Frank-Wolfe (FW)

1 fort=0,1...do

2 st € argmingcp(VF(xy),s)
k] Find step-size ;.
4 Xt11 = (1 —7e)Xt + 7eSt
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Frank-Wolfe: When do we use it?

e Projection-free. Linear subproblems vs. quadratic for
projected gradient descent (PGD).

o T . 2
S. —
ming  x v min [y — iz
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Frank-Wolfe: When do we use it?

e Projection-free. Linear subproblems vs. quadratic for
projected gradient descent (PGD).
. T . 2
min X VS. min — X
ming min [y — iz
e Solution of linear subproblem: extremal element of D.
e Sparse representation: x; convex combination of at most t

elements.

Recent Applications

e Learning the structure of a neural network. Ping, Liu, and
Ihler, 2016

e Attention mechanisms that enforce sparsity. Niculae, 2018

e (1-constrained problems with extreme number of features.
Kerdreux, Pedregosa, and d'Aspremont, 2018 3/21



A practical issue for FW

e For large n (number of samples), we need a Stochastic variant
of FW

e Naive SGD-like algorithm fails in practice and in theory

e State of the art bounds on suboptimality after t iterations:
O(n/t) and O(1/v/t)
Lu and Freund, 2020; Mokhtari, Hassani, and Karbasi, 2018
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A practical issue for FW

e For large n (number of samples), we need a Stochastic variant
of FW

e Naive SGD-like algorithm fails in practice and in theory

e State of the art bounds on suboptimality after t iterations:
O(n/t) and O(1/v/t)
Lu and Freund, 2020; Mokhtari, Hassani, and Karbasi, 2018

Can we do better?
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Practical Stochastic Frank-Wolfe:
a primal-dual point of view




Problem setting:

Let us add some structure: finite sum, and linear prediction

OPT : m|n fo x

e fi(-) is the univariate loss function of observation/sample i for
i € [n]

e n is the number of observations/samples

e C C R? is a compact convex set

e d is the order (dimension) of the model variable w
The particular structural dependence of the losses on x,-Tw is a
model with “generalized linear structure” or “linear prediction”
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Deterministic FW: Gradient Computation for OPT

Assumptions

e fi(-) is L-smooth for i € [n]: Vz,Z', |f(z) — f(Z')| < L|z — Z'|
e Linear Minimization Oracle LMO(r): s < argminyec (r, w)
Denote X := [xf; D AEN: x,-,r]
Gradient Computation

VF(w) =137 x;i-f/(x/ w) = X" where &' « Lf/(x " w), i € [n]

n

Gradient computation is O(nd) operations (expensive when n > 0...)
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Frank-Wolfe for OPT:

Frank-Wolfe algorithm for OPT:

Initialize at wo € C, t - 0 .
At iteration t :
1. Compute VF(w;_1) :
e al + Lf/(x] w._q) for EVERY i € [n]
e re=X"a, (= VF(w;_1))
2. Compute s¢ < LMO(r:) .

3. Set w¢ < wi—1 + ve(Se — we—1), where v € [0,1] .

Iteration cost is O(nd) operations (expensive when n >0 ...) 7/21



A Naive Frank-Wolfe (SFW) Strategy

f*:= min F(w):= %Zf,(x,Tw)

weC

Frank-Wolfe algorithm for OPT:

Initialize at wo € C, t < 0 .

At iteration t :
1. Compute VF(w;_1) :
o ol + Lf/(xTw,_1) for ONE i € [n] (o} = 0 for j # i)
o r.=X"a, (: x,-f,.’(xith_l))
2. Compute s; < LMO(r:) .

3. Set w¢ < wi—1 + Ve(Se — we—1), where v € [0,1] .

This approach does not work without growing the batch size [Hazan] 8/21



Our Frank-Wolfe (SFW) Strategy

f*:= min F(w):= %Zf,(x,Tw)

weC

Frank-Wolfe algorithm for OPT:

Initialize at wo € C, t - 0 .
At iteration t :
1. Compute VF(w;_1) :
e al + Lf/(x] w._q) for ONE i € [n] (o = of_, for j # 1)
o r.=X"a, (: re_1+xi(al — O‘Ll))
2. Compute s; < LMO(r:) .

3. Set w¢ < wi—1 + ve(Se — we—1), where v € [0,1] .

Iteration cost is O(d) operations! Memory cost is O(d + n) 9/21



Motivation: a Primal-Dual Lens for Constructing FW

Recall the definition of the conjugate of a function f:

f*(a) = max {a'x—f(x)}

xedomf(-)

e |If f is a closed convex function, then f** = f

o f(x) := maxgedom (1" x — F*(a)} , and
e When f is differentiable, it holds that

Vf(x) < o where o+ argmax {3 x —*(3)} .
Bedomf*(-)
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Motivation: a Primal-Dual Lens for Constructing FW

Using conjugacy we can reformulate OPT as:

OPT: m|n f(Xw) = min max {,C(W Ot) <XW a) — (e )}

weC aeR?

Given w;_; we construct the gradient of f(Xw) at w;_; by maximizing over
the dual variable a:

a; € argmax {L(w:—1,a) = (Xwi_1, ) — ()}
aeRn

— VF(Xwe1) =X

Then the LMO step corresponds to fixing the dual variable and minimizing
over the primal variable w:

S¢ < argmin {C(w,af) = (w,X ") — f*(at)}
wel

— s: — LMO(X "at)
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Results: Practice and Theory




Experiments RCV1

Problem: /;-constrained logistic regression

=

o =
| o
N ©

Relative FW gap
=
o
IS

arg min — Zg) a; x, b;) with ¢ = logistic loss.

Ixlli<e 52

Dataset  dimension  #samples

RCV1 47236 20463

Sparse Logistic Regression -- RCV1, § =100
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Experiments MovieLens 1M

Problem: trace-norm constrained robust matrix completion

1 n
argmin — > h(X;;,Aj) with h = Huber loss.

Ixll.<a B

(ij)eB

Dataset dimension  density ‘ Ly/L

MovieLens 1M 22,393,987 0.04 | 1.1 x10°2
c trace ball radius = 300 trace ball radius = 350 trace ball radius = 400
3 -
€ 0
= 10 100 100
o
5102 102 102
c
€
210 107 1074
O
o,
Q.6 -6 -6
O 200 400 600 8009 0 7000 2000 970 2000 4000

Time (in seconds) Time (in seconds) Time (in seconds)
Adaptive FW FW  —— D-FW
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Theoretical guarantees: convex case

Define the £, norm “diameter” of C to be D, := max (I X(w —v)|,

Theorem: Computational Complexity of Novel Stochastic
Frank-Wolfe Algorithm

Let Hy & |lao — VF(Xwo)||1 be the initial error of the gradient Vf, and let
the step-size rule be ~; %2 For t > 2, it holds that:

. 2(F(Xwo) — £)
Elf(Xwe) = f7] < (t+ D(t+2)

+ o3 (3) +800 ()]

(2Doo Ho + 64LD; Do ) n?
(t+1)(t+2)

Let us see what this bound is really about ...
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Theoretical guarantees: convex case

£, norm “diameter” of C is D, := maxw,vec || X(w — v)||,
Define Ratio := D; /D« and note that Ratio < n

The expected optimality gap bound is:

ey * o) e (S2)] () + ET R

:o<ﬁ£milﬁ>4—O(Eéggﬁﬂ9>4—O(wm%+L%ﬁmm(g>>

t2

< O(LDgotRatio> SO(;)
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Theoretical guarantees: convex case

£, norm “diameter” of C is D, := maxw,vec [|[X(w — v)]|,
Define Ratio := D; /D« and note that Ratio < n
The expected optimality gap bound is:

(2Doo Ho + 64LD;1 Do ) n?

+ [2LD2(L) +8LD1 Do (1)) (2) + (t+1)(t+2)

n

2 3 2
- +fo<55i%ﬁ§ﬂﬂ>+—000mm+¢ogmmg<%>>

< O(LDgotRatio> So(g)
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Theoretical guarantees: convex case

£, norm “diameter” of C is D, := maxw,vec [|[X(w — v)]|,
Define Ratio := D; /D« and note that Ratio < n
The expected optimality gap bound is:

(2Doo Ho + 64LD;1 Do )n?
(t+1)(t+2)

2(F(Xwo) — £*)

D 2LD3 (1) +8LD Do (251)] (1) +

n

:o<ﬁiﬂilﬁ>4—O(Eégfﬁﬂ9>4—O(wm%+L%ﬁmm(g>>

t2
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Theoretical guarantees: convex case

£, norm “diameter” of C is D, := maxw,vec [|[X(w — v)]|,
Define Ratio := D; /D« and note that Ratio < n
The expected optimality gap bound is:

(2Doo Ho + 64LD;1 Do )n?
(t+1)(t+2)

2(F(Xwo) — £*)

D 2LD3 (1) +8LD Do (251)] (1) +

n
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Conclusion

e A practical, fast version of Stochastic Frank-Wolfe
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Conclusion

A practical, fast version of Stochastic Frank-Wolfe

Hyperparameter-free

Implementation available in

https://github.com/openopt/copt

Use FW when the structure of your problem demands it!

Thanks for your attention
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