Symbolic Network: Generalized Neural Policies for Relational MDPs

Sankalp Garg
ICML 2020

Joint Work with Aniket Bajpai, Mausam

Data Analytics & Intelligence Research

Indian Institute of Technology, Delhi

(https://www.cse.iitd.ac.in/dair)

Overview

- Focus on Relational MDP: Compact first order representation
 - Goal: Find generalized policy to run out-of-the-box on new problem instance
 - Attractive: If learned, sidesteps the "curse of dimensionality"
 - o Introduced in 1999 [Boutilier et al], but research died down because the problem is too hard
 - No relational planners participated in International Probabilistic Planning Competition (IPPC) since 2006!
- First neural model to generalize policies for RMDP in RDDL [Sanner 2010]
 - We learn a policy on small problem sets using Neural Network
 - Given any new problem, we output a (good enough) policy without retraining

Running Example x3х1 x2 Target Target Target

Image courtesy: Scott Sanner, RDDL Tutorial

State Variables (18):

Burning (x1, y1), Burning (x2, y1), Burning (x3, y1), Burning (x1, y2), Burning (x2, y2), Burning (x3, y2), Burning (x1, y3), Burning (x2, y3), Burning (x3, y3)

Out-of-fuel (x1, y1), Out-of-fuel (x2, y1), Out-of-fuel (x3, y1), Out-of-fuel (x1, y2), Out-of-fuel (x2, y2), Out-of-fuel (x3, y2), Out-of-fuel (x1, y3), Out-of-fuel (x2, y3), Out-of-fuel (x3, y3)

Actions (19):

Cut-out (x1, y1), Cut-out (x2, y1), Cut-out (x3, y1), Cut-out (x1, y2), Cut-out (x2, y2), Cut-out (x3, y2), Cut-out (x1, y3), Cut-out (x2, y3), Cut-out (x3, y3)

Put-out (x1, y1), Put-out (x2, y1), Put-out (x3, y1), Put-out (x1, y2), Put-out (x2, y2), Put-out (x3, y2), Put-out (x1, y3), Put-out (x2, y3), Put-out (x3, y3)

Finisher

Markov Decision Process: MDP

- $m \times n$ field -2^{2*m*n} states
- With different targets as well!

Difficulties

- Curse of dimentionality : Difficult to represent states
- For learning policy (π) , we need to learn #actions in order of #states.

Relational Markov Decision Process: RMDP

Compact representation considering that real life objects share properties.

Represented with set of state variables:

• Burning(?x,?y)

For $m \times n$ field:

- 2 state predicates
- Number of states are still the same, but representation is compact

Relational Markov Decision Process: RMDP

- C: A set of classes denoting objects (e.g. Coordinate x, Coordinate y)
- \mathcal{SP} : A set of state predicates
 - Fluent: Changes with time (e.g. Burning, Out-of-Fuel)
 - Non − fluent: Static with time (e.g. X-Neighbor, Y-Neighbor)
- A: A set of action templates (e.g. Put-out, Cut-out)
- 0: A set of objects (e.g. x1, x2, y1, y2)
- \mathcal{T} : Transition function template

$$p(burning(x_i, y_i) = true) = \frac{1}{1 + e^{4.5 - k}}$$
, where $k = \#$ neighbours on fire

Still want to learn a policy $\pi: \mathcal{S} \to A$,

> But this time utilize the compact representation to share information

Problem

- Learn a generalized policy π^D which works on all instances of domain D.
- Should be able to solve any RMDP instance of D without human interference.
- Policy should be learnt on some small problem instances (fixed set)
- Learnt policy should work out-of-the-box on larger problem instance.

Overview of SymNet

Problem Representation:

Representation Learning:

Policy Learning:

Challenge 1: Instance Graph Construction

- Do we choose objects as nodes?
- If we choose object as node, then which objects?
- How do we add edges to the graph?

Solution 1: Dynamic Bayes Network (DBN)

- Every instance of domain compiles to ground DBN
- State and action variables parameterized over sequence of objects as nodes

Solution 1: Dynamic Bayes Network (DBN)

• Edge between two nodes such that they inter-influence in DBN.

Challenge 2: Multiple RDDL Representations

- Multiple RDDL representations of a domain make it hard to design a model
- E.g. Connection between points (x_1, y_1) and (x_2, y_2) can be represented as:
 - \circ $x_neighbour(x_1, x_2)$ and $y_neighbour(y_1, y_2)$
 - \circ neighbour(x_1, y_1, x_2, y_2).

Solution 2: Dynamic Bayes Network (Again!!)

DBN specifies dynamics of domain → hence RDDL representation independent

Overview of SymNet

Problem Representation:

Representation Learning:

Policy Learning:

Overview of SymNet

Problem Representation:

Representation Learning:

Policy Learning:

Challenge 3: Action Template Parameterization

- What should be parameters of action template?
- Action can span object sequence not appearing in graph.
- E.g. Finisher

Solution 3: Dynamic Bayes Network (Yet Again!!)

- DBN also represents state variables influenced by actions.
- Nodes influenced by actions will be parameters to the action module.

Challenge 4: Size Invariance

 Standard RL models every ground action explicitly, which makes it difficult to learn new action.

Does not utilize the similarity between the same type of actions

Solution 4: Modeling action template

 To achieve size independency, we learn function action templates which parameterize on objects instead of modelling ground actions independently.

Shared Parameters for an action template

[[1] Garg et. al., ICAPS 2019]

Overview of SymNet

Problem Representation:

Representation Learning:

Policy Learning:

Framework

cut-out

Experimental Settings

- Test domains Academic Advising (AA), Crossing Traffic (CT), Game of Life (GOL), Navigation (NAV), Skill Teaching, (ST), Sysadmin (Sys), Tamarisk (Tam), Traffic (Tra), and Wildfire (Wild).
- We train the policy on problem instances 1, 2, 3.
- We test the policy on domain instances from 5 to 10.
- We compare our method SymNet trained on small instances to ToRPIDo,
 TraPSNet and SymNet trained from scratch on larger instance

Metrics

To measure generalization power we report:

$$\alpha_{symnet}(0) = \frac{V_{symnet}(0) - V_{random}}{V_{max} - V_{random}}$$

Where V_{max} and V_{random} are the maximum and minimum (random) reward obtained by any algorithm at any time. [α closer to 1 is better.]

For comparison to other algorithms we report:

$$\beta_{algo} = \frac{\alpha_{symnet}(0)}{\alpha_{algo}(t)}$$

where t is the training time of algorithm [t = 4hrs].

Results for testing in instance 10

Domain	$\alpha_{symnet}(0)$	Training State Space	Testing State Space
Academic Advising	$\boldsymbol{0.91\pm0.05}$	2 ³⁰	2^{60}
Crossing Traffic	$\boldsymbol{1.00\pm0.05}$	2^{24}	284
Game of Life	0.64 ± 0.08	29	2^{30}
Navigation	$\boldsymbol{1.00\pm0.02}$	2^{20}	2 ¹⁰⁰
Skill Teaching	0.89 ± 0.03	2^{24}	2 ⁴⁸
Sysadmin	$\boldsymbol{0.96\pm0.03}$	2^{20}	2^{50}
Tamarisk	$\boldsymbol{0.95 \pm 0.06}$	2^{20}	2 ⁴⁸
Traffic	0.87 ± 0.13	2 ⁴⁴	2^{80}
Wildfire	$\boldsymbol{1.00\pm0.01}$	2^{32}	2^{72}

Comparison with other baseline on instance 10

Domain	$oldsymbol{eta}_{symnet-scratch}$	$eta_{torpido}$ [1]
Academic Advising	1.32	0.93
Crossing Traffic	1.22	4.99
Game of Life	1.25	0.68
Navigation	INF	INF
Skill Teaching	1.30	0.95
Sysadmin	1.18	1.50
Tamarisk	2.35	7.99
Traffic	1.53	1.86
Wildfire	34.80	11.19

[[1] Bajpai et. al., NeurlPS 2018]

Conclusion

- We present first neural approach to learn generalized policy of RMDP in RDDL
- Our method can solve any RMDP problem out of the box.
- We obtained good results without any training on the large problems.
- There is still room for improvement as better policies exist.

Check out our code on https://github.com/dair-iitd/symnet

Thank You