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Problem formulation



Ising models

D(A) is a distribution on {±1}p s.t.

Pr (Z = z) ∝ exp (Σi<j Ai ,jzizj + Σi Ai ,izi ),

where A ∈ Rp×p is a symmetric weight matrix.

A =



0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0


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Applications of Ising models

Ising models are heavily used in physics, social network, etc.

Magnet:

• Each dimension represents a particular ‘spin’ in the material.

• −1 if the spin points down or +1 if the spin points up.

Social network:

• Each of the dimensions is a person in the network.

• −1 represents voting for Hilary; +1 represents for Trump.
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Two alternative objectives

h: unknown Ising model

Input: i.i.d. samples X n
1 from h

Structure learning: output Â ∈ {0, 1}p×p s.t.

w.h.p., ∀i 6= j , Âi ,j = 1(Ai ,j 6= 0).

Parameter learning: given accuracy α, output Â ∈ Rp×p s.t.

w.h.p., ∀i 6= j ,
∣∣∣Âi ,j − Ai ,j

∣∣∣ ≤ α.
Sample complexity: least n to estimate h
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Privacy

Data may contain sensitive information.

Medical studies:

• Learn behavior of genetic mutations.

• Data contains health records or disease history.

Navigation:

• Suggests routes based on aggregate positions of individuals.

• Position information indicates users’ residence.
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Differential privacy (DP) [Dwork et al., 2006]

f̂ is (ε, δ)-DP for any X n
1 and Y n

1 , with dham(X n
1 ,Y

n
1 ) ≤ 1, for all

measurable S ,

Pr
(
f̂ (X n

1 ) ∈ S
)
≤ eε · Pr

(
f̂ (Y n

1 ) ∈ S
)

+ δ
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Privately learning Ising models

Given i.i.d. samples from distribution p, the goals are:

• Accuracy : achieve structure learning or parameter learning.

• Privacy : estimator must satisfy (ε, δ)-DP.
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Main results



Main results

Assumption: the underlying graph has a bounded degree.

Parameter

Learning

Structure

Learning
Non-

private
O(log p)

[Wu et al., 2019]

O(log p)
[Wu et al., 2019]

(ε, δ)-DP Θ(
√
p) Θ(log p)

(ε, 0)-DP Ω(p) Ω(p)
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Main results

Assumption: the underlying graph has a bounded degree.

Parameter

Learning

Structure

Learning
Non-

private
O(log p)

[Wu et al., 2019]

O(log p)
[Wu et al., 2019]

(ε, δ)-DP Θ(
√
p) Θ(log p)

(ε, 0)-DP Ω(p) Ω(p)

Only (ε, δ)-DP structure learning is tractable in high dimensions!

8



Private structure learning



Private structure learning - upper bound

Our (ε, δ)-DP UB comes from Propose-Test-Release.

Lemma 1 [Dwork and Lei, 2009]. Given the existence of a

m-sample non-private SL algorithm, there exists an (ε, δ)-DP

algorithm with the sample complexity n = O
(
m log(1/δ)

ε

)
.

We note that this method does not work when δ = 0.
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Private structure learning - lower bound

Our (ε, 0)-LB comes from a reduction from product distribution

learning.

By packing argument, we show n = Ω(p).
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Private structure learning
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Private structure learning
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Private parameter learning



Private parameter learning - upper bound

The following lemma is a nice property of Ising model.

Lemma 2. Let Z ∼ D(A), then ∀i ∈ [p], ∀x ∈ {±1}[p−1],
Pr (Zi = 1|Z−i = x) = σ(Σj 6=i 2Ai ,jxj + 2Ai ,i ).

+1 -1

…

+1

-1

? ? ?

Question: Can we utilize sparse logistic regression?
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Private parameter learning - upper bound

Answer: Yes! And there are two advantages:

• O(log p) samples are enough without

privacy [Wu et al., 2019].

• It can be efficiently and privately solved by private

Frank-Wolfe algorithm [Talwar et al., 2015].
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Private parameter learning - lower bound

We consider a similar reduction as structure learning.

Our (ε, δ)-DP LB comes from a reduction from product

distribution learning.

14



Private parameter learning

Parameter

Learning

Structure

Learning
Non-

private
O(log p)

[Wu et al., 2019]

O(log p)
[Wu et al., 2019]

(ε, δ)-DP Θ
(√

p
)

Θ(log p)

(ε, 0)-DP Ω(p) Ω(p)
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Generalization to other GMs



Generalization to other GMs

Similar results are shown in other graphical models:

• Binary t-wise Markov Random Field:

From pairwise to t-wise dependency.

• Pairwise Graphical Model on General Alphabet:

Alphabet from {±1}p to [k]p.
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