3\

Microsoft PAUL G. ALLEN SCHOOL
ReS earc h OF COMPUTER SCIENCE & ENGINEERING

Soft Threshold Weight Reparameterization
for Learnable Sparsity

Aditya Kusupati
Vivek Ramanujan”, Raghav Somani”, Mitchell Wortsman”
Prateek Jain, Sham Kakade and Ali Farhadi

Motivation

* Deep Neural Networks
* Highly accurate
* Millions of parameters & Billions of FLOPs
* Expensive to deploy

* Sparsity
 Reduces model size & inference cost
* Maintains accuracy
* Deployment on CPUs & weak single-core devices

Privacy preserving Billions of mobile
smart glasses m devices

Motivation

* Existing sparsification methods

* Focus on model size vs accuracy — very little on inference FLOPs
e Global, uniform or heuristic sparsity budget across layers

Layer 1 Layer 2 Layer 3
]]]) T]
}]| (] o] o}
2] B CEEC
Cim 1]]]]
| |1 i [[T
7 o]]] Total
Params 20 100 1000 1120

FLOPs 100K 100K 50K 250K

Sparsity — Method 1

Params 20 100 100 220
FLOPs 100K 100K 5K 205K

Sparsity — Method 2

Params 10 10 200 220
FLOPs 50K 10K (0] ¢ 70K

Motivation

* Non-uniform sparsity budget — Layer-wise
* Very hard to search in deep networks
* Sweet spot — Accuracy vs FLOPs vs Sparsity
e Existing techniques
* Heuristics —increase FLOPs
* Use RL —expensive to train

“Can we design a robust efficient method to learn
non-uniform sparsity budget across layers?”

Overview

* STR — Soft Threshold Reparameterization

Soft threshold _

STR(W,, @) = sign(W,) - ReLU(IW,| —a)

* Learns layer-wise non-uniform sparsity budgets

 Same model size; Better accuracy; Lower inference FLOPs
* SOTA on ResNet50 & MobileNetV1 for ImageNet-1K
* Boosts accuracy by up to 10% in ultra-sparse (98-99%) regime

e Extensions to structured, global & per-weight
(mask-learning) sparsity

Existing Methods

Sparsity
SOTA; Hard to train;
Dense training cost Lower training cost
D -to- -to-
ense 'Fo.sparse Hybrid Sparse jco. sparse
training training
e DNW & DPF
. : Non-uniform Non-uniform
Uniform sparsity . :
sparsity sparsity
* Gradual Magnitude * Heuristics — ERK * DSR, SNFS, Rigl etc.,
Pruning (GMP) * Global Pruning/Sparsity * Heuristics — ERK

e Re-allocation using

* STR - some gains from
magnitude/gradient

sparse-to-sparse

STR - Method

| Hard threshold | | | | Soft threshold |

STR - Method

Soft threshold

ST (x,a) = sign(x) - ReLU(|x| — @)
= sign(x) - ReLU(|x]| —

L-layer DNN, W = [W,]{_,,s = [s;]i~; and a function g(.)

Sq(Wy, s1) = sign(Wy) - ReLU(|W;| — g(s;))

W « S, (W, s)

STR - Training

mmL(é‘ (W,s),D) + /12(|W1|2 + [s5115)

Regular training with reparameterized weights S, (W, s)

Same weight-decay parameter (1) for both (W, s)
e Controls the overall sparsity

Initialize s; g(s) = 0
* Finer sparsity and dense training control

Choice of g(.)

* Unstructured sparsity: Sigmoid
e Structured sparsity: Exponential

STR - Training

e STR learns the SOTA hand-crafted heuristic of GMP

[
o
L

o
o
L

Sparsity (%)
iy

0

20 40 60 80 100
Epoch

Overall sparsity vs Epochs — 90% sparse ResNet50 on ImageNet-1K

* STR learns diverse non-uniform layer-wise sparsities
| ERPREURDY

Sparsity (%)
(e}
o
T

60

27 29
Layer

Layer-wise sparsity — 90% sparse ResNet50 on ImageNet-1K

STR - Experiments

e Unstructured sparsity - CNNs
* Dataset: ImageNet-1K
* Models: ResNet50 & MobileNetV1
* Sparsity range: 80 - 99%
e Ultra-sparse regime: 98 - 99%

e Structured sparsity — Low rank in RNNs
* Datasets: Google-lz (keyword spotting), HAR-2 (activity recognition)
* Model: FastGRNN

e Additional

* Transfer of learnt budgets to other sparsification techniques
* STR for global, per-weight sparsity & filter/kernel pruning

11

Unstructured vs Structured Sparsity

* Unstructured sparsity

* Typically magnitude based pruning with
global or layer-wise thresholds

]]]]]]
=] (]] (]]

| T [||| =
[])
[] 5] (]]]
EC = ECE

=
|
=
=]
o
=

e Structured sparsity
* Low-rank & neuron/filter/kernel pruning

() 5] L
EELDEE

EEEOEE
Creraic
[[][}

] (] 5] 5]][]

EREON

STR Unstructured Sparsity: ResNet50

75 ==
70 —
—_ o h I \‘-/ 1
g STR N g STR
8 GMP 8 GMP
860 L DNW | 860 DNW
° SNFS 7 SNFS
P 55 |l -+- SNFS + ERK _\ . - -+- SNFS + ERK _
—<— RigL i —<— RigL
50 |- - RigL + ERK 50 . -4-- RigL + ERK
—»— DPF —»— DPF
45 I I i 45 i I I [
90 92 94 96 98 100 0] 50 100 150 200 250 300 350 400
Sparsity (%) FLOPs (millions)

* STR requires 20% lesser FLOPs with same accuracy for 80-95% sparsity

e STR achieves 10% higher accuracy than baselines in 98-99% regime

13

STR Unstructured Sparsity: MobileNetV1

70 70 -
STR STR
GMP GMP
68 — 68 ! i .
> 66 & 66
o o
=} =}
[®} (9
(S} Q
< <
- 64 ~ 64
o o
o (o)
[[
62 62
(5]0] 60
74 76 78 80 82 84 86 88 90 40 60 80 100 120 140 160 180
Sparsity (%) FLOPs (millions)

* STR maintains accuracy for 75% sparsity with 62M lesser FLOPs

* STR has ~50% lesser FLOPs for 90% sparsity with same accuracy

14

Spars
N

)

STR Sparsity Budget: ResNet50

ity (%)
)]

Layer-wise sparsity and FLOPs budgets for 90% sparse

ResNet50 on ImageNet-1K

N

NIRRT

/s

il

ERERSNIA

[N

]

|

]

|

I

VIViyd v

STR
Unﬁornl_

L BN

— ERK
— GS

5 27 29
Layer

STR
Uniform |

— ERK
— GS

FLOPS (Millions
N w »

N

o LSt

 STR learns sparser

initial layers than the
non-uniform sparsity
baselines

e STR makes last layers

denser than all baselines

 STR produces sparser

backbones for transfer
learning

e STR adjusts the FLOPs

across layers such that it
has lower total inference

cost than the baselines
15

STR Sparsity Budget: MobileNetV1

Layer-wise sparsity and FLOPs budgets for 90% sparse
MobileNetV1 on ImageNet-1K

Sparsity (%)

FLOPS (Millions)

ol A A NN AN A AL
) e STR automatically keeps
2 1 | ST'R" depth-wise separable
N .. conv layers denser than
R - rest of the layers
" —— sm ||
Sile STR’s budget results in
8 50% lesser FLOPs than
° GMP
, | ‘ _
2 | - A LA AN A I
o |

1 3 5 7 9 11 13 15 17 19 21 23 25 27 16
Layer

STRConv

Algorithm 1 PyTorch code for STRConv with per-layer threshold.

import torch
import torch.nn as nn
import torch.nn.functional as F

from args import args as parser_args

def softThreshold(x, s, g=torch.sigmoid):

STR on a weight x (can be a tensor) with "s" (typically a scalar, but can be a tensor) with function

Hq" .
return torch.sign (x)+torch.relu(torch.abs(x)-g(s))
class STRConv (nn.Conv2d): # Overloaded Conv2d which can replace nn.ConvZd
def __init__ (self, =*xargs, x+kwargs):
super () .__init__ (*args, *+*kwargs)
"g" can be chosen appropriately, but torch.sigmoid works fine.
self.g = torch.sigmoid
parser_args gets arguments from command line. sInitValue is the initialization of "s" for all layers. It

can take in different values per-layer as well.
self.s = nn.Parameter (parser_args.sInitValue«torch.ones([1, 1]))

"s" can be per-layer (a scalar), global (a shared scalar across layers), per—-channel/filter (a vector)
or per individual weight (a tensor of the size self.weight). All the experiments use per-layer "s" (a
scalar) in the paper.
def forward(self, x):
self.sparseWeight = softThreshold(self.weight, self.s, self.q)
f Parameters except "x" and "self.sparseWeight" can be chosen appropriately. All the experiments use
default PyTorch arguments.

x = F.conv2d(x, self.sparseWeight, self.bias, self.stride, self.padding, self.dilation, self.groups)

return x
FC layer is implemented as a 1xl ConvZd and STRConv is used for FC

1o

layer as well.

17

STR Structured Sparsity: Low rank

0
[=
=
=]
=1
=

1] (]] o []
1] ()][]
] [[| []
1| (])
5] []] o [

Typical low-rank
parameterization

EEECEE
1)) o]
EECEEC]
]]]

[] (]] 5]])
[E ==

EEECEE
1)) o]
EECEEC]
] [)]]
[S S EIEE
EEELE

[EEE S
1))) o)
EEOEEC]
)]]
[E S SEIEE
ELEELE]

W,

[EEE S
1))) o)
EEOEEC]
]]]
[S SEIEE
ELEELE]

18

STR — Critical Design Choices

* Weight-decay A
* Controls overall sparsity
e Larger A — higher sparsity at the cost of some instability

* |nitialization of s;
e Controls finer sparsity exploration
* Controls duration of dense training

* Careful choice of g(.)
* Drives the training dynamics
* Better functions which consistently revive dead weights

19

STR - Conclusions

STR enables stable end-to-end training (with no additional
cost) to obtain sparse & accurate DNNs

STR efficiently learns per-layer sparsity budgets
e Reduces FLOPs by up to 50% for 80-95% sparsity
* Up to 10% more accurate than baselines for 98-99% sparsity
* Transferable to other sparsification techniques

Future work
* Formulation to explicitly minimize FLOPs
e Stronger guarantees in standard sparse regression setting

Code, pretrained models and sparsity budgets available at

https://github.com/RAIVNLab/STR

Mitchell*

Prateek

pA

