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Motivation

* Deep Neural Networks
* Highly accurate
* Millions of parameters & Billions of FLOPs
* Expensive to deploy

* Sparsity
 Reduces model size & inference cost
* Maintains accuracy
* Deployment on CPUs & weak single-core devices

Privacy preserving Billions of mobile
smart glasses m devices



Motivation

* Existing sparsification methods

* Focus on model size vs accuracy — very little on inference FLOPs
e Global, uniform or heuristic sparsity budget across layers
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Motivation

* Non-uniform sparsity budget — Layer-wise
* Very hard to search in deep networks
* Sweet spot — Accuracy vs FLOPs vs Sparsity
e Existing techniques
* Heuristics —increase FLOPs
* Use RL —expensive to train

“Can we design a robust efficient method to learn
non-uniform sparsity budget across layers?”



Overview

* STR — Soft Threshold Reparameterization

Soft threshold _

STR(W,, @) = sign(W,) - ReLU(IW,| —a)

* Learns layer-wise non-uniform sparsity budgets

 Same model size; Better accuracy; Lower inference FLOPs
* SOTA on ResNet50 & MobileNetV1 for ImageNet-1K
* Boosts accuracy by up to 10% in ultra-sparse (98-99%) regime

e Extensions to structured, global & per-weight
(mask-learning) sparsity



Existing Methods

Sparsity
SOTA; Hard to train;
Dense training cost Lower training cost
D -to- -to-
ense 'Fo.sparse Hybrid Sparse jco. sparse
training training
e DNW & DPF
. : Non-uniform Non-uniform
Uniform sparsity . :
sparsity sparsity
* Gradual Magnitude * Heuristics — ERK * DSR, SNFS, Rigl etc.,
Pruning (GMP) * Global Pruning/Sparsity * Heuristics — ERK

e Re-allocation using

* STR - some gains from
magnitude/gradient

sparse-to-sparse



STR - Method
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STR - Method

Soft threshold

ST (x,a) = sign(x) - ReLU(|x| — @)
= sign(x) - ReLU(|x]| —

L-layer DNN, W = [W,]{_,,s = [s;]i~; and a function g(.)

Sq(Wy, s1) = sign(Wy) - ReLU(|W;| — g(s;))

W « S, (W, s)



STR - Training

mmL(é‘ (W,s),D) + /12(|W1|2 + [s5115)

Regular training with reparameterized weights S, (W, s)

Same weight-decay parameter (1) for both (W, s)
e Controls the overall sparsity

Initialize s; g(s) = 0
* Finer sparsity and dense training control

Choice of g(.)

* Unstructured sparsity: Sigmoid
e Structured sparsity: Exponential



STR - Training

e STR learns the SOTA hand-crafted heuristic of GMP
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Overall sparsity vs Epochs — 90% sparse ResNet50 on ImageNet-1K

* STR learns diverse non-uniform layer-wise sparsities
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STR - Experiments

e Unstructured sparsity - CNNs
* Dataset: ImageNet-1K
* Models: ResNet50 & MobileNetV1
* Sparsity range: 80 - 99%
e Ultra-sparse regime: 98 - 99%

e Structured sparsity — Low rank in RNNs
* Datasets: Google-lz (keyword spotting), HAR-2 (activity recognition)
* Model: FastGRNN

e Additional

* Transfer of learnt budgets to other sparsification techniques
* STR for global, per-weight sparsity & filter/kernel pruning
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Unstructured vs Structured Sparsity

* Unstructured sparsity

* Typically magnitude based pruning with
global or layer-wise thresholds
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e Structured sparsity
* Low-rank & neuron/filter/kernel pruning

() 5 ] L
EELDEE

EEEOEE
Creraic
[ [ ][}

] (] 5] 5] ][]

EREON




STR Unstructured Sparsity: ResNet50
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* STR requires 20% lesser FLOPs with same accuracy for 80-95% sparsity

e STR achieves 10% higher accuracy than baselines in 98-99% regime
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STR Unstructured Sparsity: MobileNetV1
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* STR maintains accuracy for 75% sparsity with 62M lesser FLOPs

* STR has ~50% lesser FLOPs for 90% sparsity with same accuracy
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STR Sparsity Budget: ResNet50
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Layer-wise sparsity and FLOPs budgets for 90% sparse

ResNet50 on ImageNet-1K
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 STR learns sparser

initial layers than the
non-uniform sparsity
baselines

e STR makes last layers

denser than all baselines

 STR produces sparser

backbones for transfer
learning

e STR adjusts the FLOPs

across layers such that it
has lower total inference

cost than the baselines
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STR Sparsity Budget: MobileNetV1

Layer-wise sparsity and FLOPs budgets for 90% sparse
MobileNetV1 on ImageNet-1K

Sparsity (%)

FLOPS (Millions)

ol A A NN AN A AL
) e STR automatically keeps
2 1 | ST'R" depth-wise separable
N .. conv layers denser than
R - rest of the layers
" —— sm ||
Sile STR’s budget results in
8 50% lesser FLOPs than
° GMP
, | ‘ _
2 | - A LA AN A I
o |

1 3 5 7 9 11 13 15 17 19 21 23 25 27 16
Layer



STRConv

Algorithm 1 PyTorch code for STRConv with per-layer threshold.

import torch
import torch.nn as nn
import torch.nn.functional as F

from args import args as parser_args

def softThreshold(x, s, g=torch.sigmoid):

# STR on a weight x (can be a tensor) with "s" (typically a scalar, but can be a tensor) with function

Hq" .
return torch.sign (x)+torch.relu(torch.abs(x)-g(s))
class STRConv (nn.Conv2d): # Overloaded Conv2d which can replace nn.ConvZd
def __init__ (self, =*xargs, x+kwargs):
super () .__init__ (*args, *+*kwargs)
# "g" can be chosen appropriately, but torch.sigmoid works fine.
self.g = torch.sigmoid
# parser_args gets arguments from command line. sInitValue is the initialization of "s" for all layers. It

can take in different values per-layer as well.
self.s = nn.Parameter (parser_args.sInitValue«torch.ones([1, 1]))

# "s" can be per-layer (a scalar), global (a shared scalar across layers), per—-channel/filter (a vector)
or per individual weight (a tensor of the size self.weight). All the experiments use per-layer "s" (a
scalar) in the paper.
def forward(self, x):
self.sparseWeight = softThreshold(self.weight, self.s, self.q)
f Parameters except "x" and "self.sparseWeight" can be chosen appropriately. All the experiments use
default PyTorch arguments.

x = F.conv2d(x, self.sparseWeight, self.bias, self.stride, self.padding, self.dilation, self.groups)

return x
# FC layer is implemented as a 1xl ConvZd and STRConv is used for FC

1o

layer as well.

17



STR Structured Sparsity: Low rank
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STR — Critical Design Choices

* Weight-decay A
* Controls overall sparsity
e Larger A — higher sparsity at the cost of some instability

* |nitialization of s;
e Controls finer sparsity exploration
* Controls duration of dense training

* Careful choice of g(.)
* Drives the training dynamics
* Better functions which consistently revive dead weights
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STR - Conclusions

STR enables stable end-to-end training (with no additional
cost) to obtain sparse & accurate DNNs

STR efficiently learns per-layer sparsity budgets
e Reduces FLOPs by up to 50% for 80-95% sparsity
* Up to 10% more accurate than baselines for 98-99% sparsity
* Transferable to other sparsification techniques

Future work
* Formulation to explicitly minimize FLOPs
e Stronger guarantees in standard sparse regression setting

Code, pretrained models and sparsity budgets available at

https://github.com/RAIVNLab/STR



Mitchell*

Prateek

pA



