
Soft Threshold Weight Reparameterization 
for Learnable Sparsity

Aditya Kusupati
Vivek Ramanujan*, Raghav Somani*, Mitchell Wortsman*

Prateek Jain, Sham Kakade and Ali Farhadi
1



Motivation

• Deep Neural Networks
• Highly accurate
• Millions of parameters & Billions of FLOPs
• Expensive to deploy

• Sparsity
• Reduces model size & inference cost
• Maintains accuracy
• Deployment on CPUs & weak single-core devices

Privacy preserving 
smart glasses

Billions of mobile 
devices

2



Motivation

• Existing sparsification methods
• Focus on model size vs accuracy – very little on inference FLOPs
• Global, uniform or heuristic sparsity budget across layers

Layer 1 Layer 2 Layer 3

# Params

FLOPs

20 100 1000

100K 100K 50K

Total

1120

250K

Sparsity – Method 1

# Params

FLOPs

Sparsity – Method 2

20 100 100

100K 100K 5K

220

205K

# Params

FLOPs

10 10 200

50K 10K 10K

220

70K
3



Motivation

“Can we design a robust efficient method to learn 
non-uniform sparsity budget across layers?”

• Non-uniform sparsity budget – Layer-wise
• Very hard to search in deep networks
• Sweet spot – Accuracy vs FLOPs vs Sparsity
• Existing techniques

• Heuristics – increase FLOPs
• Use RL – expensive to train

4



Overview

• STR – Soft Threshold Reparameterization

• Learns layer-wise non-uniform sparsity budgets 
• Same model size; Better accuracy; Lower inference FLOPs 
• SOTA on ResNet50 & MobileNetV1 for ImageNet-1K
• Boosts accuracy by up to 10% in ultra-sparse (98-99%) regime

• Extensions to structured, global & per-weight 
(mask-learning) sparsity 

𝑆𝑇𝑅 𝐖𝑙 , 𝛼𝑙 = sign 𝐖𝑙 ∙ ReLU( 𝐖𝑙 − 𝛼𝑙)

5



Existing Methods

Sparsity

Dense-to-sparse 
training

Uniform sparsity
Non-uniform 

sparsity

Sparse-to-sparse 
training

Non-uniform 
sparsity

SOTA;
Dense training cost 

Hard to train;
Lower training cost

• Gradual Magnitude 
Pruning (GMP)

• Heuristics – ERK
• Global Pruning/Sparsity

• STR - some gains from 

sparse-to-sparse

• DSR, SNFS, RigL etc.,
• Heuristics – ERK
• Re-allocation using 

magnitude/gradient

• DNW & DPF

Hybrid

6



STR - Method

𝐻𝑇 𝑥, 𝛼 = ቊ
𝑥; 𝑥 > 𝛼
0; 𝑥 ≤ 𝛼

𝑆𝑇 𝑥, 𝛼 = ቐ
𝑥 − 𝛼; 𝑥 > 𝛼

0; 𝑥 ≤ 𝛼
𝑥 + 𝛼; 𝑥 < −𝛼

𝛼 = 2

7



STR - Method

𝑆𝑇 𝑥, 𝛼 = sign 𝑥 ∙ ReLU( 𝑥 − 𝛼)

= sign 𝑥 ∙ ReLU( 𝑥 − 𝑔(𝑠))

L-layer DNN, 𝒲 = 𝐖𝑙 𝑙=1
𝐿 , 𝐬 = 𝑠𝑙 𝑙=1

𝐿 and a function 𝑔(. )

𝒮𝑔 𝐖𝑙 , 𝑠𝑙 = sign 𝐖𝑙 ∙ ReLU( 𝐖𝑙 − 𝑔(𝑠𝑙))

Type equation here.
𝒲←𝒮𝑔(𝒲, s) 

8



STR - Training

Type equation here.

min
𝒲,𝐬

ℒ 𝒮𝑔 𝒲, 𝐬 , 𝒟 + 𝜆෍

𝑙=1

𝐿

𝐖𝑙 2
2 + 𝑠𝑙 2

2

• Regular training with reparameterized weights 𝒮𝑔 𝒲, 𝐬

• Same weight-decay parameter (𝜆) for both 𝒲,𝐬
• Controls the overall sparsity

• Initialize 𝑠; 𝑔 𝑠 ≈ 0
• Finer sparsity and dense training control

• Choice of 𝑔 .
• Unstructured sparsity: Sigmoid
• Structured sparsity: Exponential

9



• STR learns the SOTA hand-crafted heuristic of GMP

• STR learns diverse non-uniform layer-wise sparsities

STR - Training

Type equation here.

Overall sparsity vs Epochs – 90% sparse ResNet50 on ImageNet-1K

Layer-wise sparsity – 90% sparse ResNet50 on ImageNet-1K 10



STR - Experiments

• Unstructured sparsity - CNNs
• Dataset: ImageNet-1K
• Models: ResNet50 & MobileNetV1
• Sparsity range: 80 - 99%

• Ultra-sparse regime: 98 - 99%

• Structured sparsity – Low rank in RNNs
• Datasets: Google-12 (keyword spotting), HAR-2 (activity recognition)

• Model: FastGRNN

• Additional
• Transfer of learnt budgets to other sparsification techniques
• STR for global, per-weight sparsity & filter/kernel pruning 

11



Unstructured vs Structured Sparsity

• Unstructured sparsity
• Typically magnitude based pruning with 

global or layer-wise thresholds

• Structured sparsity
• Low-rank & neuron/filter/kernel pruning

12



STR Unstructured Sparsity: ResNet50

• STR requires 20% lesser FLOPs with same accuracy for 80-95% sparsity

• STR achieves 10% higher accuracy than baselines in 98-99% regime

13



STR Unstructured Sparsity: MobileNetV1

• STR maintains accuracy for 75% sparsity with 62M lesser FLOPs

• STR has ∼50% lesser FLOPs for 90% sparsity with same accuracy 

14



STR Sparsity Budget: ResNet50

• STR learns sparser 
initial layers than the 
non-uniform sparsity 
baselines

• STR makes last layers 
denser than all baselines

• STR produces sparser 
backbones for transfer 
learning

• STR adjusts the FLOPs 
across layers such that it 
has lower total inference 
cost than the baselines

Layer-wise sparsity and FLOPs budgets for 90% sparse 
ResNet50 on ImageNet-1K

15



STR Sparsity Budget: MobileNetV1

• STR automatically keeps 
depth-wise separable 
conv layers denser than 
rest of the layers

• STR’s budget results in 
50% lesser FLOPs than 
GMP

Layer-wise sparsity and FLOPs budgets for 90% sparse 
MobileNetV1 on ImageNet-1K

16



STRConv

17



STR Structured Sparsity: Low rank

𝐖 𝐖𝟏 𝐖𝟐∑

Train with STR on ∑

𝐖𝟏 𝐖𝟐∑

Typical low-rank 
parameterization

෩𝐖𝟏
෩𝐖𝟐

18



STR – Critical Design Choices

• Weight-decay 𝜆
• Controls overall sparsity
• Larger 𝜆 → higher sparsity at the cost of some instability

• Initialization of 𝑠𝑙
• Controls finer sparsity exploration
• Controls duration of dense training

• Careful choice of 𝑔(. )
• Drives the training dynamics
• Better functions which consistently revive dead weights

19



STR - Conclusions

• STR enables stable end-to-end training (with no additional 
cost) to obtain sparse & accurate DNNs

• STR efficiently learns per-layer sparsity budgets
• Reduces FLOPs by up to 50% for 80-95% sparsity
• Up to 10% more accurate than baselines for 98-99% sparsity
• Transferable to other sparsification techniques

• Future work
• Formulation to explicitly minimize FLOPs
• Stronger guarantees in standard sparse regression setting

• Code, pretrained models and sparsity budgets available at

https://github.com/RAIVNLab/STR
20



21

Thank You 
Prateek

Raghav* Mitchell*Vivek*Aditya

Sham Ali


