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How to decide between new tools?
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Generalization to New Actions
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Using new New Actions
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Fine-tuning on New Action Set
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Fine-tuning on New Action Set
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Fine-tuning Is expensive!
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Actions Characterized by Observations
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Select and Place Tools
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Seqguential Decision-making
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How to solve the task with new tools”
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Action Observations
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Same Pipeline for New Actions
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Training Procedure
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Action Encoder
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Hierarchical Variational Auto-encoder (HVAE) architecture (Edwards & Storkey, 2017)
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Hierarchical Latent Spaces
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Flat VAE without Hierarchy?
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Policy Architecture
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Policy Architecture
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Policy Architecture
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Avoiding Overfitting in RL

2 \
@\ A I:> Policy I:>
70
=l —=

State

A
A
ﬂ Environment




Action Dropout
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Environments
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t-SNE Visualization of Representations
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Hierarchy extracts semantic information
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Hierarchy helps policy learning

CREATE Shape Stacking
V] .
S £ I Training
A ()
0 T
z \ Generalization

@8 Ours Non-Hierarchical VAE




Policy Architecture Baselines
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Nearest Neighbor Policy Baseline
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Continuous Output
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Learning task utility helps generalization
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Qualitative Results: Shape Stacking
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Qualitative Results: CREATE
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Takeaways

Solving tasks using new action choices without retraining!

Explore CREATE, Results & Code at clvrai.com/create



http://clvrai.com/create

