Generalization to New Actions in Reinforcement Learning

Ayush Jain*, Andrew Szot*, Joseph J. Lim

Cooking Tools

How to decide between new tools?

Generalization to New Actions

Using new New Actions

Tool Improvisation

New Recommendations

Acquired Skill Set

Approach Intuition

- 1. Observation
- 2. Inference
- 3. Decision-making

Actions are characterized by their behaviors

Approach Intuition

- 1. Observation
- 2. Inference
- 3. Decision-making

Actions are characterized by their behaviors

Approach Intuition

- 1. Observation
- 2. Inference
- 3. Decision-making

Actions are characterized by their behaviors

Results: CREATE

Generalization

Results: CREATE

Training actions

Generalization

Results: CREATE

Training actions

Generalization

clvrai.com/create

Shape Stacking

2D Grid

Recommender

Problem Formulation

Problem Formulation

Available Actions

Training

Evaluation

Problem Formulation

Fine-tuning on New Action Set

New Actions

Fine-tuning on New Action Set

Fine-tuning is expensive!

Zero-Shot Generalization to New Action Sets is Important

Actions Characterized by Observations

Chain REAction Tool Environment (CREATE)

Select and Place Tools

Select and Place Tools

Sequential Decision-making

Sequential Decision-making

Environment Reward

Environment Reward

How to solve the task with new tools?

Action Observations

Diverse behaviors of tools

CREATE Tools

More tools generated by varying the parameters of these tool types

Approach

Approach

Action Space

(1) Learn Action Representations

(2) Learn Generalizable Policy

Same Pipeline for New Actions

Training Procedure

Action Encoder

Hierarchical Variational Auto-encoder (HVAE) architecture (Edwards & Storkey, 2017)

Hierarchical Latent Spaces

Hierarchical Latent Spaces

Flat VAE without Hierarchy?

Averaging observation latents

Policy Architecture

Policy Architecture

Policy Architecture

Avoiding Overfitting in RL

Action Dropout

Avoid overfitting to certain actions

Maximum Entropy RL

Encourage diverse actions

Maximum Entropy RL

Encourage diverse actions

Environments

Environments

CREATE

Unseen Tools

Shape Stacking

Unseen 3D Shapes

2D Navigation

Unseen Skills

Recommender System

Unseen Products

Environments

12 CREATE Tasks

Shape Stacking

Task: Stack a stable tower

Shape Stacking

Task: Stack a stable tower

Results

t-SNE Visualization of Representations

Hierarchy extracts semantic information

Hierarchical VAE

Flat VAE

Hierarchy helps policy learning

Policy Architecture Baselines

Nearest Neighbor Policy Baseline

Training

Nearest Neighbor Policy Baseline

Continuous Output Policy Baseline

Continuous Output Policy Baseline

New Actions

Learning task utility helps generalization

Qualitative Results: Shape Stacking

Training

Generalization

Qualitative Results: CREATE

Ladder Belt

Qualitative Results: CREATE

Ladder Belt

Takeaways

Solving tasks using new action choices without retraining!

Explore CREATE, Results & Code at clvrai.com/create