
Reverse-Engineering
Deep ReLU Networks

David Rolnick and Konrad Körding
University of Pennsylvania

International Conference on Machine Learning (ICML) 2020

Reverse-engineering a neural network

Problem:
Recover network architecture and weights from black-box access.

Implications for:
• Proprietary networks
• Confidential training data
• Adversarial attacks

1

Is perfect reverse-engineering possible?

What if two networks define exactly the same function?

ReLU networks unaffected by:
• Permutation: re-labeling neurons/weights in any layer
• Scaling: at any neuron, multiplying incoming weights & bias by ,

multiplying outgoing weights by

Our goal:
Reverse engineering deep ReLU networks up to permutation & scaling.

2

Related work

• Recovering networks with one hidden layer (e.g. Goel & Klivans 2017,
Milli et al. 2019, Jagielski et al. 2019, Ge et al. 2019)
• Neuroscience, simple circuits in brain (Heggelund 1981)
• No algorithm to recover even the first layer of a deep network

3

Linear regions in a ReLU network

• Activation function:

• Deep ReLU networks are piecewise
linear functions:

• Linear regions = pieces of on
which is constant

(Hanin & Rolnick 2019)
4

Boundaries of linear regions

5

Boundaries of linear regions

Piecewise linear boundary component for each neuron
(Hanin & Rolnick 2019)

6

Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each
boundary component is connected and that and intersect
for each pair of adjacent neurons and .

a) Given the set of linear region boundaries, it is possible to recover
the complete structure and weights of the network, up to
permutation and scaling, except for a measure-zero set of
networks.

b) It is possible to approximate the set of linear region boundaries and
thus the architecture/weights by querying the network.

7

Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each
boundary component is connected and that and intersect
for each pair of adjacent neurons and .

a) Given the set of linear region boundaries, it is possible to recover
the complete structure and weights of the network, up to
permutation and scaling, except for a measure-zero set of
networks.

b) It is possible to approximate the set of linear region boundaries and
thus the architecture/weights by querying the network.

8

Part (a), proof intuition
Neuron in Layer 1

9

Part (a), proof intuition
Neuron in Layer 2

10

Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each
boundary component is connected and that and intersect
for each pair of adjacent neurons and .

a) Given the set of linear region boundaries, it is possible to recover
the complete structure and weights of the network, up to
permutation and scaling, except for a measure-zero set of
networks.

b) It is possible to approximate the set of linear region boundaries
and thus the architecture/weights by querying the network.

11

Part (b): reconstructing Layer 1

Goal: Approximate boundaries by
querying network adaptively

Approach: Identify points on the
boundary by binary search using

1) Find boundary points along a line
2) Each belongs to some , identify

the local hyperplane by regression
3) Test whether is a hyperplane

12

Part (b): reconstructing Layers ≥ 2

1) Start with unused boundary
points identified in previous
algorithm

2) Explore how bends as it
intersects already identified

13

Why don’t we just…

…train on the output of the black-box network to recover it?
It doesn’t work.

…repeat our algorithm for Layer 1 to learn Layer 2?
Requires arbitrary inputs to Layer 2, but cannot invert Layer 1.

14

Assumptions of the algorithm

Boundary components are connected
Þ generally holds unless input dimension small

Adjacent neurons have intersecting boundary components
Þ failure can result from unavoidable ambiguities in network (beyond

permutation and scaling)

Note: Algorithm “degrades gracefully”
• When assumptions don’t hold exactly, still recovers most of the network

15

More complex networks

Convolutional layers
• Algorithm still works
• Doesn’t account for weight-sharing, so less efficient

Skip connections
• Algorithm works with modification
• Need to consider intersections between more pairs of boundary

components

16

Experimental results – Layer 1 algorithm

17

Experimental results – Layer ≥ 2 algorithm

18

Summary

• Prove: Can recover architecture, weights, & biases of deep ReLU
networks from linear region boundaries (under natural assumptions).
• Implement: Algorithm for recovering full network from black-box

access by approximating these boundaries.
• Demonstrate: Success of our algorithm at reverse-engineering

networks in practice.

19

