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Reverse-engineering a neural network

Problem:
Recover network architecture and weights from black-box access.

Implications for:
• Proprietary networks
• Confidential training data
• Adversarial attacks
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Is perfect reverse-engineering possible?

What if two networks define exactly the same function?

ReLU networks unaffected by:
• Permutation: re-labeling neurons/weights in any layer
• Scaling: at any neuron, multiplying incoming weights & bias by            , 

multiplying outgoing weights by

Our goal:
Reverse engineering deep ReLU networks up to permutation & scaling.
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Related work

• Recovering networks with one hidden layer (e.g. Goel & Klivans 2017, 
Milli et al. 2019, Jagielski et al. 2019, Ge et al. 2019)
• Neuroscience, simple circuits in brain (Heggelund 1981)
• No algorithm to recover even the first layer of a deep network
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Linear regions in a ReLU network

• Activation function:

• Deep ReLU networks are piecewise 
linear functions:

• Linear regions = pieces of            on 
which           is constant

(Hanin & Rolnick 2019)
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Boundaries of linear regions
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Boundaries of linear regions

Piecewise linear boundary component        for each neuron             
(Hanin & Rolnick 2019)
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Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each 
boundary component        is connected and that        and         intersect 
for each pair of adjacent neurons    and     .   

a) Given the set of linear region boundaries, it is possible to recover 
the complete structure and weights of the network, up to 
permutation and scaling, except for a measure-zero set of 
networks. 

b) It is possible to approximate the set of linear region boundaries and 
thus the architecture/weights by querying the network.  
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Part (a), proof intuition
Neuron     in Layer 1
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Part (a), proof intuition
Neuron     in Layer 2

10



Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each 
boundary component        is connected and that        and         intersect 
for each pair of adjacent neurons    and     .   

a) Given the set of linear region boundaries, it is possible to recover 
the complete structure and weights of the network, up to 
permutation and scaling, except for a measure-zero set of 
networks. 

b) It is possible to approximate the set of linear region boundaries 
and thus the architecture/weights by querying the network.  

11



Part (b): reconstructing Layer 1

Goal: Approximate boundaries by 
querying network adaptively

Approach: Identify points on the 
boundary by binary search using

1) Find boundary points along a line
2) Each belongs to some       , identify 

the local hyperplane by regression
3) Test whether       is a hyperplane
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Part (b): reconstructing Layers ≥ 2

1) Start with unused boundary 
points identified in previous 
algorithm

2) Explore how       bends as it 
intersects         already identified
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Why don’t we just…

…train on the output of the black-box network to recover it?
It doesn’t work.

…repeat our algorithm for Layer 1 to learn Layer 2?
Requires arbitrary inputs to Layer 2, but cannot invert Layer 1.
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Assumptions of the algorithm

Boundary components are connected
Þ generally holds unless input dimension small

Adjacent neurons have intersecting boundary components
Þ failure can result from unavoidable ambiguities in network (beyond 

permutation and scaling)

Note: Algorithm “degrades gracefully”
• When assumptions don’t hold exactly, still recovers most of the network
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More complex networks

Convolutional layers
• Algorithm still works
• Doesn’t account for weight-sharing, so less efficient

Skip connections
• Algorithm works with modification
• Need to consider intersections between more pairs of boundary 

components
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Experimental results – Layer 1 algorithm
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Experimental results – Layer ≥ 2 algorithm
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Summary

• Prove: Can recover architecture, weights, & biases of deep ReLU
networks from linear region boundaries (under natural assumptions).
• Implement: Algorithm for recovering full network from black-box 

access by approximating these boundaries.
• Demonstrate: Success of our algorithm at reverse-engineering 

networks in practice.
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