Reverse-Engineering Deep ReLU Networks

David Rolnick and Konrad Körding *University of Pennsylvania*

International Conference on Machine Learning (ICML) 2020

Reverse-engineering a neural network

Problem:

Recover network architecture and weights from black-box access.

Implications for:

- Proprietary networks
- Confidential training data
- Adversarial attacks

Is perfect reverse-engineering possible?

What if two networks define exactly the same function?

ReLU networks unaffected by:

- **Permutation:** re-labeling neurons/weights in any layer
- Scaling: at any neuron, multiplying incoming weights & bias by c>0 , multiplying outgoing weights by 1/c

Our goal:

Reverse engineering deep ReLU networks up to permutation & scaling.

Related work

- Recovering networks with one hidden layer (e.g. Goel & Klivans 2017, Milli et al. 2019, Jagielski et al. 2019, Ge et al. 2019)
- Neuroscience, simple circuits in brain (Heggelund 1981)
- No algorithm to recover even the first layer of a deep network

Linear regions in a ReLU network

Activation function:

$$ReLU(z) = max(0, z)$$

 Deep ReLU networks are piecewise linear functions:

$$\mathcal{N}:\,\mathbb{R}^{n_{ ext{in}}}
ightarrow\mathbb{R}^{n_{ ext{out}}}$$

• Linear regions = pieces of $\mathbb{R}^{n_{\mathrm{in}}}$ on which $\nabla \mathcal{N}$ is constant

(Hanin & Rolnick 2019)

Boundaries of linear regions

Boundaries of linear regions

Piecewise linear boundary component \mathcal{B}_z for each neuron z (Hanin & Rolnick 2019)

Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each boundary component \mathcal{B}_z is connected and that \mathcal{B}_z and $\mathcal{B}_{z'}$ intersect for each pair of adjacent neurons z and z'.

- a) Given the set of linear region boundaries, it is possible to recover the complete structure and weights of the network, up to permutation and scaling, except for a measure-zero set of networks.
- b) It is possible to approximate the set of linear region boundaries and thus the architecture/weights by querying the network.

Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each boundary component \mathcal{B}_z is connected and that \mathcal{B}_z and $\mathcal{B}_{z'}$ intersect for each pair of adjacent neurons z and z'.

- a) Given the set of linear region boundaries, it is possible to recover the complete structure and weights of the network, up to permutation and scaling, except for a measure-zero set of networks.
- b) It is possible to approximate the set of linear region boundaries and thus the architecture/weights by querying the network.

Part (a), proof intuition

Neuron z in Layer 1

Part (a), proof intuition

Neuron z' in Layer 2

Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each boundary component \mathcal{B}_z is connected and that \mathcal{B}_z and $\mathcal{B}_{z'}$ intersect for each pair of adjacent neurons z and z'.

- a) Given the set of linear region boundaries, it is possible to recover the complete structure and weights of the network, up to permutation and scaling, except for a measure-zero set of networks.
- b) It is possible to approximate the set of linear region boundaries and thus the architecture/weights by querying the network.

Part (b): reconstructing Layer 1

Goal: Approximate boundaries by querying network adaptively

Approach: Identify points on the boundary by binary search using $\nabla \mathcal{N}$

- 1) Find boundary points along a line
- 2) Each belongs to some \mathcal{B}_z , identify the local hyperplane by regression
- 3) Test whether \mathcal{B}_z is a hyperplane

Part (b): reconstructing Layers ≥ 2

- 1) Start with unused boundary points identified in previous algorithm
- 2) Explore how \mathcal{B}_z bends as it intersects $\mathcal{B}_{z'}$ already identified

Additional layers

Why don't we just...

...train on the output of the black-box network to recover it?

It doesn't work.

...repeat our algorithm for Layer 1 to learn Layer 2?

Requires arbitrary inputs to Layer 2, but cannot invert Layer 1.

Assumptions of the algorithm

Boundary components are connected

⇒ generally holds unless input dimension small

Adjacent neurons have intersecting boundary components

⇒ failure can result from unavoidable ambiguities in network (beyond permutation and scaling)

Note: Algorithm "degrades gracefully"

• When assumptions don't hold exactly, still recovers most of the network

More complex networks

Convolutional layers

- Algorithm still works
- Doesn't account for weight-sharing, so less efficient

Skip connections

- Algorithm works with modification
- Need to consider intersections between more pairs of boundary components

Experimental results – Layer 1 algorithm

Experimental results – Layer ≥ 2 algorithm

Summary

- **Prove:** Can recover architecture, weights, & biases of deep ReLU networks from linear region boundaries (under natural assumptions).
- Implement: Algorithm for recovering full network from black-box access by approximating these boundaries.
- **Demonstrate:** Success of our algorithm at reverse-engineering networks in practice.