Reverse-Engineering
Deep ReLU Networks

David Rolnick and Konrad Kérding

University of Pennsylvania

International Conference on Machine Learning (ICML) 2020

Reverse-engineering a neural network

Problem:
Recover network architecture and weights from black-box access.

Implications for:

* Proprietary networks

* Confidential training data
* Adversarial attacks

s perfect reverse-engineering possible?

What if two networks define exactly the same function?

ReLU networks unaffected by:
* Permutation: re-labeling neurons/weights in any layer

* Scaling: at any neuron, multiplying incoming weights & bias by ¢ > 0,
multiplying outgoing weights by 1/¢

Our goal:
Reverse engineering deep RelLU networks up to permutation & scaling.

Related work

e Recovering networks with one hidden layer (e.g. Goel & Klivans 2017,
Milli et al. 2019, Jagielski et al. 2019, Ge et al. 2019)

* Neuroscience, simple circuits in brain (Heggelund 1981)

* No algorithm to recover even the first layer of a deep network

Linear regions in a ReLU network

e Activation function:
ReLU(z) = max(0, z)

* Deep RelLU networks are piecewise
linear functions:

N: Rnin — Rnout

ndino uolound

e Linear regions = pieces of R"™ on
which VN is constant

(Hanin & Rolnick 2019)

4

Boundaries of linear regions

Layer 1 Layer 2

7/

Function output
Input dim 2

Input dim 1

Boundaries of linear regions

Layer 1 Layer 2

Function output
Input dim 2
b
¥
AN

Input dim 1

Piecewise linear boundary component B3, for each neuron 2
(Hanin & Rolnick 2019)

Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each
boundary component [5, is connected and that 5, and 3., intersect
for each pair of adjacent neurons z and 2

a) Given the set of linear region boundaries, it is possible to recover
the complete structure and weights of the network, up to
permutation and scaling, except for a measure-zero set of

networks.

b) Itis possible to approximate the set of linear region boundaries and
thus the architecture/weights by querying the network.

Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each
boundary component [5, is connected and that 5, and 3., intersect
for each pair of adjacent neurons z and 2

a) Given the set of linear region boundaries, it is possible to recover
the complete structure and weights of the network, up to
permutation and scaling, except for a measure-zero set of

networks.

b) Itis possible to approximate the set of linear region boundaries and
thus the architecture/weights by querying the network.

Part (a), proof intuition

Neuron 2 in Layer 1

0= z2(x) :Zwi:vi—l—b

Part (a), proof intuition

/.
Neuron 2 In Layer 2

0=2(z) =) w.ReLU(2(x)) +b

10

Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each
boundary component [5, is connected and that 5, and 3., intersect
for each pair of adjacent neurons z and 2

a) Given the set of linear region boundaries, it is possible to recover
the complete structure and weights of the network, up to
permutation and scaling, except for a measure-zero set of

networks.

b) Itis possible to approximate the set of linear region boundaries
and thus the architecture/weights by querying the network.

Part (b): reconstructing Layer 1

Goal: Approximate boundaries by
guerying network adaptively

Approach: Identify points on the
boundary by binary search using VA

1) Find boundary points along a line

2) Each belongs to some B, identify
the local hyperplane by regression

3) Test whether 3. is a hyperplane

Identifying the first layer

perplanes

3. Test hyperplanes

12

Part (b): reconstructing Layers > 2

Additional layers

1) Start with unused boundary
points identified in previous
slgorithm

2. Explore boundary

2) Explore how 5, bends as it
intersects |5, already identified | | A/ -

1. Unused
boundary points

13

Why don’t we just...

...train on the output of the black-box network to recover it?
It doesn’t work.

...repeat our algorithm for Layer 1 to learn Layer 2?
Requires arbitrary inputs to Layer 2, but cannot invert Layer 1.

Assumptions of the algorithm

Boundary components are connected
—> generally holds unless input dimension small

Adjacent neurons have intersecting boundary components

= failure can result from unavoidable ambiguities in network (beyond
permutation and scaling)

Note: Algorithm “degrades gracefully”
* When assumptions don’t hold exactly, still recovers most of the network

More complex networks

Convolutional layers
* Algorithm still works
* Doesn’t account for weight-sharing, so less efficient

Skip connections
* Algorithm works with modification

* Need to consider intersections between more pairs of boundary
components

queries per learned parameter

Experimental results — Layer 1 algorithm

1000 : : : I g
— 2 layers, untrained 'g

900} — 3 layers, untrained ‘O -9
4 layers, untrained =

8001 — 2 layers, memorization task | | 8 _10l
— 2 layers, MNIST c
—
©

700} L —11}
-

600} O -12

500+ é —-13}
(@)
c

400¢ ~ —14
—
\ [e)

L t _15 L
300 3
(@)]
o

A
o)
o

20Q35 15 20 25 30 35 40 45 50 15 20 25 30 35
Layer 1 neurons # Layer 1 neurons

w
o

Layer 2 neurons found
H

[
o

Experimental results — Layer > 2 algorithm

— 2 layers, untrained

| — 2 layers, memorization task

I
o

w
w

w
o

N
ul

N
o

=
wul

o

15 20

25 30 35 40 45
Layer 2 neurons

2 layers, untrained - weights

2 layers, untrained - biases

2 layers, memorization task - weights
2 layers, memorization task - biases

g -2
©
©
a 4
k5
c —6f
|-
©
Q
T8
o)
Yy
= —10f
£
o)
C _12f
~~
-
o
= —14}
g
o
o -1§

15 20 25 30 35
Layer 2 neurons

18

Summary

* Prove: Can recover architecture, weights, & biases of deep RelLU
networks from linear region boundaries (under natural assumptions).

* Implement: Algorithm for recovering full network from black-box
access by approximating these boundaries.

 Demonstrate: Success of our algorithm at reverse-engineering
networks in practice.

