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What are these papers about?
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What are these papers about?

They are dealing with matrix factorization

X
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×
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or one factor admits a particular structure (e.g., piecewise constant), but it is not sparse.
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What these papers are about?

In these papers, data matrices have many columns,

X

m ≈

D

p

×
A

p

n→ +∞

n→ +∞

or an infinite number of columns, or columns are streamed online.
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Formulation(s)

X = [x1,x2, . . . ,xn] is a data matrix.

We may call D = [d1, . . . ,dp] a dictionary.

A = [α1, . . . ,αn] carries the decomposition coefficients of X onto D.

Interpretation as signal/data decomposition

X ≈ DA ⇐⇒ ∀ i, xi ≈ Dαi =

p∑
j=1

αi[j]dj .
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Formulation(s)

n∑
i=1

min
D∈D

Ex [L(x,D)] with L(x,D)
M
= min

α∈A

1

2
‖x−Dα‖2 + λψ(α).

Which formulations does it cover?

D A ψ

non-negative matrix factorization Rm×p
+ Rp

+ 0

sparse coding {D : ∀ j, ‖dj‖ ≤ 1} Rp ‖.‖1
non-negative sparse coding {D : ∀ j, ‖dj‖ ≤ 1} Rp

+ ‖.‖1
structured sparse coding {D : ∀ j, ‖dj‖ ≤ 1} Rp ‖.‖1 + Ω(.)

≈ sparse PCA {D : ∀ j, ‖dj‖22 + ‖dj‖1 ≤ 1} Rp ‖.‖1
...

...
...

...

[Paatero and Tapper, ’94]

, [Olshausen and Field, ’96], [Hoyer, 2002], [Mairal et al., 2011], [Zou et al., 2004].
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The sparse coding context

was introduced by Olshausen and Field, ’96. It was the first time (together with ICA, see
[Bell and Sejnowski, ’97]) that a simple unsupervised learning principle would lead to

various sorts of “Gabor-like” filters, when
trained on natural image patches.
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The sparse coding context

Remember that we can play with various structured sparsity-inducing penalties:

[Jenatton et al. 2010], [Kavukcuoglu et al., 2009], [Mairal et al. 2011], [Hyvärinen and Hoyer, 2001].
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Sparsity and simplicity principles

1921

1950 1960 1970 1980 1990 2000 2010

1921: Wrinch and Jeffrey’s simplicity principle.

1952: Markowitz’s portfolio selection.

1960’s and 70’s: best subset selection in statistics.

1990’s: the wavelet era in signal processing.

1996: Olshausen and Field’s dictionary learning method.

1994–1996: the Lasso (Tibshirani) and Basis pursuit (Chen and Donoho).

2004: compressed sensing (Candes, Romberg and Tao).

2006: Elad and Aharon’s image denoising method.
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Context of 2009

Many successful stories of dictionary learning in image processing

image denoising, inpainting, demosaicing, super-resolution . . .

Also successful stories in computer vision for modeling local features

dictionary learning on top of SIFT wins the PASCAL VOC’09 challenge.

another variant wins the ImageNet 2010 challenge.

Matrix factorization becomes a key technique for unsupervised data modeling

recommender systems (Netflix prize) and social networks.

document clustering.

genomic pattern discovery.

. . .
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Context of 2009

Many successful stories of dictionary learning in image processing

image denoising, inpainting, demosaicing, super-resolution . . .

Also successful stories in computer vision for modeling local features

dictionary learning on top of SIFT wins the PASCAL VOC’09 challenge.

another variant wins the ImageNet 2010 challenge.

Matrix factorization becomes a key technique for unsupervised data modeling

recommender systems (Netflix prize) and social networks.

document clustering.

genomic pattern discovery.

. . .

[Yang et al., 2009], [Lin et al. 2010] . . .

Julien Mairal Online Dictionary Learning for Sparse Coding 10/15



Context of 2009

Many successful stories of dictionary learning in image processing

image denoising, inpainting, demosaicing, super-resolution . . .

Also successful stories in computer vision for modeling local features

dictionary learning on top of SIFT wins the PASCAL VOC’09 challenge.

another variant wins the ImageNet 2010 challenge.

Matrix factorization becomes a key technique for unsupervised data modeling

recommender systems (Netflix prize) and social networks.

document clustering.

genomic pattern discovery.

. . .

[Koren et al., 2009b], [Ma et al. 2008], [Xu et al. 2003], [Brunet et al., 2004]. . .
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Context of 2009

Classical approach for matrix factorization: alternate minimization

min
D∈D,A∈A

1

2
‖X−DA‖2F + λψ(A).

which requires loading all data at every iteration (batch optimization).

Meanwhile, Léon Bottou is advocating stochastic optimization for machine learning

which makes the risk minimization point of view relevant:

min
D∈D

1

n

n∑
i=1

L(xi,D) with L(x,D)
M
= min

α∈A

1

2
‖x−Dα‖2+λψ(α).

see Léon’s tutorial at NIPS’07, or NeurIPS’18 test of time award [Bottou and Bousquet, 2008].

Julien Mairal Online Dictionary Learning for Sparse Coding 11/15



Context of 2009

Classical approach for matrix factorization: alternate minimization

min
D∈D,A∈A

1

2
‖X−DA‖2F + λψ(A).

which requires loading all data at every iteration (batch optimization).
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What we did

We started experimenting with SGD

and tuning the step-size turned out to be painful.

Can we then design an algorithm that would be as fast as SGD, but more practical?

Idea 1: If we knew optimal codes α?
i for all xi’s in advance, then the problem becomes

min
D∈D

{
1

2
trace

(
D>DB

)
− trace

(
D>C

)}
with B =

1

n

n∑
i=1

α?
iα

?>
i and C =

1

n

n∑
i=1

xiα
?>
i ,

which yields parameter-free block coordinate descent rules for updating D.

Idea 2: Build appropriate matrices B and C in an online fashion.

What about theory?

We could provide guarantees of convergence to stationary points, even though the problem
is non-convex, stochastic, constrained, and non-smooth.

[Neal and Hinton, ’98], [Mairal, 2013], [Mensch, 2018].
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Reasons for impact: How did it help other fields?

A timely context ( ≈ luck)

Datasets were becoming larger and larger, and there was suddenly a need for more
scalable matrix factorization methods.

A combination of mathematics and engineering?

an efficient software package: the SPAMS toolbox.

robustness to hyper-parameters: default setting that works (many times) in practice.

(try it with pip install spams in Python, or download R/Matlab packages).

Flexibility in the constraints/penalty design

allowing the method to be used in unexpected contexts.
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Connection with neural networks

A cheap way to obtain a sparse code β from x and D is

β = relu(D>x− λ),

versus

α ∈ arg min
α∈A

1

2
‖x−Dα‖2 + λ‖α‖1.

Then, not surprisingly, for dictionary learning,

end-to-end feature learning is feasible.

one can design convolutional and multilayer models.

sparse decomposition algorithms perform neural network-like operations (LISTA).

[Mairal et al., 2012], [Zeiler and Fergus, 2010], [Gregor and LeCun, 2010].
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Thoughts

Is Wrinch and Jeffrey’s simplicity principle still relevant?

Simplicity is a key to interpretability and to model/hypothesis selection.

Next form will probably be different than `1. Which one?

Simplicity is not enough. Various forms and robustness and stability are also needed.

[Yu and Kumbier, 2019].
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