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The Biclustering Problem

Task

Given a data matrix X € R"*P, find subgroups of rows & columns that go
together.

@ Text mining: similar documents share a small set of highly correlated words.

o Collaborative filtering: likeminded customers share similar preferences for a
subset of products

@ Cancer genomics: subtypes of cancerous tumors share similar molecular
profiles over a subset of genes
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Cancer Genomics

@ Lung cancer is heterogenous at the molecular level
@ Which genes are driving lung cancer?

@ These genes are potential drug targets

@ Collect expression data

Genes

Tissue Sample
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Simple Solution: Cluster Dendrogram

Hierarchical
Clustering

Genes

i
i

Tissue Sample

@ Each dendrogram is constructed independently of multiscale structure in
other dimension.
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From Co-clustering to Co-Manifold Learning

| would add that in many real-world applications there is no “true” fixed
number of biclusters, i.e. the truth is a bit more continuous...
—Anonymous Referee 2
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Clustered Dendrogram
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What if data matrices are not completely observed?

Missing data scenario
o Complete data: X € R"™P
@ Suppose we only get to observe © C {1,...,n} x {1,...,p}.
@ Possibly by design: too expensive to collect / measure all np possible entries

@ Goal: Recover row and column coordinate systems, not necessarily complete
missing data
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X[i,j] (i,5) €©
0 otherwise
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Co-Manifold Learning
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» Solve co-clustering-missing problem at multiple row and column scales
@ Build multiscale row and column metrics

o Calculate non-linear embeddings

Gal Mishne (Yale) Co-Manifold Learning June 12, 2019 7/ 14



Step 1: Co-clustering an Incomplete Data Matrix

. 1
min F(U) = 5[[Pa(X - U)|If +7e Y QU = Uyll2) + 7 > Q(IUk. — Upll,)

i<j k<l
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o Folded concave penalty = less bias towards 0
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Step 1: Majorization-Minimization (MM)

1, - - -
G(U[V)=3IX~ U +7e Y eV = Ujlla+ 7 > Wra Uk = Upll, + ¢

i<j k<l
X = Pq(X) + Pa- (V)

V“|’/[_-7,'j = Q/(”V, — VJH2) and I/T/,yk/ = Q/(||Vk — V/||2)

Can be solved with Convex Bi-clustering [Chi et al. 2017].
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Step 1: Majorization-Minimization (MM)

Majorization:

1 - .
GU[V)=S[X~ U +7e Y WeillUi = Ujlla+ 7 > W Uk = Up ]l + ¢

i<j k<l

e F(U)=G(U|U)
e F(U)<G(U|V) forallU

MM: Solve sequence of Convex Biclustering Problems

U;y1 = argmin G(U | Uy)
u

Proposition

Under suitable regularity conditions, the sequence U, generated by Algorithm 1
has at least one limit point, and all limit points are d-stationary points of
minimizing F(U).
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Step 1: Smoothing Rows and Columns at Different Scale
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Co-Manifold Learning
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@ Solve co-clustering-missing problem at multiple row and column scales
Build multiscale row and column metrics

o Calculate non-linear embeddings
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Step 2: Multiscale metric

Intuition:
@ Pair of rows are close over multiple scale — distance should be small

@ Pair of rows are far apart over multiple scales — distance should be big

Step 1: Fill in X over multiple v,, 7. scales: )~((r’c) = Po(X) + Poc(U(7r,7¢))

Step 2: Take weighted combination over all scales of pairwise distances

(r,c (r c)
d(X,-., X Z('Vr'Yc ||X H

@ « tunable to emphasize local versus global structure
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Co-Manifold Learning
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@ Solve co-clustering-missing problem at multiple row and column scales
@ Build multiscale row and column metrics
Calculate non-linear embeddings
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Step 3: Spectral Embedding

Example: Diffusion Map (Coifman & Lafon, 2006)
@ Construct an affinity matrix
Alij] = exp{-d*(Xi.,X;.)/0%}
@ Compute row-stochastic matrix

P = DA, D[l',i]ZZA[iaj]

e Eigendecomposition of P: keep first d eigenvalues and eigenvectors
e Mapping W embeds the rows into the Euclidean space RY:

VX = (Aan(7), Aata(i), - -, Aatba(i))
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Some Examples
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Some Examples
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