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On-line Active Learning Setup

I At each round t ∈ [T ], receives unlabeled xt ∼ DX i.i.d.
I Decides whether to request label:

I If label requested, receives yt .
I After T rounds, returns a hypothesis hT ∈ H.

Objective:
I Generalizations error:

I Accurate predictor hT : small expected loss R(hT ) = Ex,y
[
`(hT (x), y)

]
.

I Close to best-in-class h∗ = argminh∈H R(h).
I Label complexity: few label requests.



Disagreement-based Active Learning

Key idea: Request label when there is some disagreement among hypotheses.
Examples:

I Separable case: CAL (Cohn et al., 1994).
I Non-separable case: A2 (Balcan et al., 2006), DHM (Dasgupta et al., 2008).
I IWAL (Beygelzimer et al., 2009).

Can we improve upon existing disagreement-based algorithms, such as IWAL?
I Better guarantees?
I Leverage average disagreements?



This talk

I IWAL-D algorithm: enhanced IWAL with disagreement graph.
I IZOOM algorithm: enhanced IWAL-D with zooming-in.
I Better generalization and label complexity guarantees.
I Experimental results.



Disagreement Graph (D-Graph)

I Vertices: hypotheses in H (a finite hypothesis set)
I Edges: fully connected. The edge between h,h′ ∈ H is weighted by their

expected disagreement:

L(h,h′) = E
x∼DX

[
max
y∈Y

∣∣`(h(x), y)− `(h′(x), y)
∣∣].

L symmetric, ` ≤ 1⇒ L ≤ 1.
I D-Graph can be accurately estimated using unlabeled data.



Disagreement Graph (D-Graph)

One favorable scenario:
I Best-in-class h∗ ( ) is within an isolated cluster;
I L(h,h∗) is small within the cluster.



IWAL-D Algorithm: IWAL with D-Graph

I At round t ∈ [T ], receive xt .
1. Flip a coin Qt ∼ Ber(pt ), with disagreement-based bias:

pt = max
h,h′∈Ht

max
y∈Y

∣∣`(h(xt ), y)− `(h′(xt ), y)
∣∣.

2. If Qt = 1, request the label yt .
3. Trim the version space:

Ht+1 =
{

h ∈ Ht : Lt (h) ≤ Lt (ĥt ) +
(
1 + L(h, ĥt )

)
∆t

}
,

which uses importance weighted empirical risk

Lt (h) =
1
t

t∑
s=1

Qs

ps
`(h(xs), ys), ĥt = argmin

h∈Ht

Lt (h), ∆t = Õ
(√

log(T |H|)
t

)
.

I After T rounds, return ĥT .



IWAL-D vs. IWAL: Quantify the Improvement

Theorem (IWAL-D) With high probability,

R(ĥT ) ≤ R∗ +
(
1 + L(ĥT ,h∗)

)
∆T ,

E
x∼DX

[
pt |Ft−1

]
≤ 2θ

[
2R∗ + max

h∈Ht

(
2 + L(h, ĥt−1) + L(h,h∗)

)
∆t−1

]
.

I θ: disagreement coefficient (Hanneke, 2007).
I More aggressive trimming of the version space.
I Slightly better generalization guarantee and label complexity.



IWAL and IWAL-D

Problem:
I Theoretical guarantees only hold for finite hypothesis sets.
I Need ε-cover to extend to infinite hypothesis sets.
I Expensive to construct ε-cover in practice.

Can we adaptively enrich the hypothesis set, with theoretical guarantees?



IZOOM: IWAL-D with Zooming-in

At round t ,
I Request label based on dis. of (Ht )

I H′t+1 ← Trim(Ht )

I H′′t+1 ← Resample(H′t+1)

I Ht+1 ← H′t+1 ∪H′′t+1

Trim Resample
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IZOOM: IWAL-D with Zooming-in

At round t ,
I Request label based on dis. of (Ht )

I H′t+1 ← Trim(Ht )

I H′′t+1 ← Resample(H′t+1)

I Ht+1 ← H′t+1 ∪H′′t+1

Trim ResampleResample(H′t+1): sample new h ∈ ConvexHull(H′t+1).

I E.g., random convex combination of ĥt and h ∈ H′t+1.
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IZOOM vs. IWAL-D

Let Ht = ∪t
s=1Ht , i.e. all the hypotheses ever considered up to time t . Let

h∗t = argminh∈Ht
R(h).

Theorem (IZOOM) With high probability,

R(ĥT ) ≤ R∗T +
(
1 + L(ĥT ,h∗T )

)
∆T + O( 1

T ),

E
x∼DX

[
pt+1|Ft

]
≤ 2θt

[
2R∗t + max

h∈Ht+1

(
2 + L(h, ĥt ) + L(h,h∗t )

)
∆t
]

+ O( 1
T ).

I R∗t = minh∈Ht R(h) is smaller than R∗ = minh∈H0 R(h).

I More accurate ĥT , with fewer label requests.



Experiments

Tasks: 8 Binary classification datasets from UCI repository.
I `: logistic loss rescaled to [0,1].

Baselines:
I IWAL with 3,000 hypotheses.
I IWAL with 12,000 hypotheses.
I IZOOM with 3,000 hypotheses.

Performance measure:
I 0-1 loss on test data vs. number of label requests.



Experiments
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Conclusion

I Key introduction and role of disagreement graph.
I More favorable generalization and label complexity guarantees.
I Substantial performance improvements.
I Effective solutions for active learning.

Poster: Pacific Ballroom #265

KDD workshop (Alaska, August 2019) on Active Learning:
Data Collection, Curation, and Labeling for Mining and Learning.


