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Example 1: Active Learning in Parametric Models
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Goal: Learn parameter 6 in as few experiments.

Algorithms: Active-Set-Select (Chaudhuri et al. 2015)



Example 2: Blackbox Optimisation
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Goal: Find argmax, fy(x) in as few experiments.

Algorithms: UCB (Srinivas et al 2010, Auer 2002), El (Jones et al 1998).
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» Blackbox Optimisation » Active Level Set Estimation (Gotovos et al. '13)
> Active Learning > Active Search (Ma et al. '17)
» Active Quadrature > Active Posterior Estimation

(Osborne et al. 2012) (Kandasamy et al. '15)



Adaptive Goal Oriented Design of Experiments

4 N\
Experiment
\ J,

Y X
Update model Next design
with results to test

. Recommendation
(Bayesian) Model b—) Algorithm I
~——
Application Specific Goal
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> Active Learning > Active Search (Ma et al. '17)
» Active Quadrature > Active Posterior Estimation
(Osborne et al. 2012) (Kandasamy et al. '15)
Issues:

» New goal/setting =—> New algorithm?
» Algorithms tend to depend on the model and vice versa.
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1. System:

» An unknown parameter 6 completely specifies the system.

» A prior P(0) and a likelihood P(Y|X, 6).



Adaptive Goal Oriented Design of Experiments

1. System:

» An unknown parameter 6 completely specifies the system.

» A prior P(0) and a likelihood P(Y|X, 6).

2. Goal:

» Collect data D, = {(x¢, yx,)} 71 to maximise a user specified
reward function \(6, D).



Algorithm: Myopic Posterior Sampling (MPS)

Inspired by Posterior (Thompson) Sampling (Thompson 1933).

At each time step, myopically choose action by assuming that a
posterior sample ' ~ P(6|past-experiments) is the true parameter.



Algorithm: Myopic Posterior Sampling (MPS)

Inspired by Posterior (Thompson) Sampling (Thompson 1933).

At each time step, myopically choose action by assuming that a
posterior sample ¢’ ~ P(0|past-experiments) is the true parameter.

Only requires that we can sample from the posterior.
- Many probabilistic programming tools available today.
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Theorem (Informal): Under certain conditions, MPS is
competitive with a globally optimal oracle that knows 6.

Proof ideas from adaptive submodularity and bandits.
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Theory

Theorem (Informal): Under certain conditions, MPS is
competitive with a globally optimal oracle that knows 6.

Proof ideas from adaptive submodularity and bandits.

Prior work: With adaptive submodularity, myopic planning
algorithms are good when the reward is known a priori.

This work:
» (0, Dp): reward not known a priori.

» A myopic learning+planning algorithm is good in adaptive
submodular environments.



Experiments
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