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Estimating preferences in similarity embedding
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• Item preferences ranked by distance to user

• Continuous user point: hypothetical ideal item (not necessarily in 
dataset)
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Method of paired comparisons

Learn preferences via method of paired comparisons

– Direct comparisons may be explicitly solicited

– Comparisons are implicitly solicited everywhere

– In practice, responses are noisy, inconsistent

(David, 1963)

“Which of these two foods do 
you prefer to eat?”
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• Pairwise search: estimate user vector 𝑤 ∈ ℝ$ based on paired 
comparisons between items

• Ideal point model: continuous point 𝑤 encodes ideal item that 
is preferred over all other items

Ideal point model

(Coombs, 1950)

Paired comparison (𝑝, 𝑞): user at 𝑤	
  prefers item 𝑝 over item 𝑞
if and only if 𝑤− 𝑝 < 𝑤− 𝑞

𝑝

𝑞

more preferred

less preferred

𝑤
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– Query pairs adaptively

– Add slack variables to feasible 
region

– Repeat comparisons, take 
majority vote

– Previous methods do not
incorporate noise into pair 
selection

How can paired comparisons (hyperplanes) be selected? 

• Query as few pairs as possible

• Linear models (e.g., learning to rank, latent factors) 
unsuitable for nonlinear ideal point model

• Feasible region tracking

Prior work

(Massimino & Davenport, 2018)

(Jamieson & Nowak, 2011)

(Wu et al., 2017;
Qian et al., 2015)

𝑤
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• 𝑎/0 ∈ ℝ$, 𝑏/0 ∈ ℝ : weights, 
threshold of hyperplane 
bisecting 𝑝, 𝑞

• Model noise with logistic 
response probability 

– 𝑘/0: noise constant, 
represents signal-to-noise 
ratio

– User estimated as posterior 
mean (MMSE estimator)

𝑃 𝑝 ≺ 𝑞 =
1

1+ 𝑒9:;<(=;<
> ?9@;<)

𝑤A

Modeling response noise

𝑞

𝑝
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Our contribution

• Directly incorporate noise model into adaptive 
selection of pairs

• Strategy 1: InfoGain

• Strategy 2: EPMV
– analytically tractable

• Strategy 3: MCMV
– computationally tractable
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• 𝑌C: binary response to ith paired comparison

• ℎC 𝑊 : differential entropy of posterior

• InfoGain: choose queries that maximize expected decrease 
in posterior entropy i.e. information gain:

• No closed-form expression, estimate with samples from 
posterior
– Computationally expensive: scales in product of                  

# of samples and # candidate pairs

• Difficult to analyze convergence

Strategy 1: Maximize information gain (InfoGain)

𝐼 𝑊; 𝑌C 𝑦C9I = ℎC9I 𝑊 − 𝐸KL [ℎC(𝑊)|𝑦
C9I]

user responds
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Information gain intuition
• Symmetry of mutual information:

• First term promotes selection of comparisons where 
outcome is non-obvious, given previous responses
– Maximized when comparison response is equiprobable, 

i.e. probability of picking each pair item is 1/2 

𝐼 𝑊;𝑌C 𝑦C9I = 𝐻(𝑌C|𝑦C9I) − 𝐻(𝑌C|𝑊, 𝑦C9I)
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Information gain intuition
• Symmetry of mutual information:

• Second term promotes selection of comparisons that 
would have predictable outcomes if 𝑤 were known

• Choose query where 𝑤 is far from hyperplane in 
expectation
– i.e. posterior variance orthogonal to hyperplane

(projected variance) is large

When 𝑤 close to 
hyperplane, response 

is unpredictable

𝑎/0Q 𝑤− 𝑏/0

0.5

𝐼 𝑊;𝑌C 𝑦C9I = 𝐻(𝑌C|𝑦C9I) − 𝐻(𝑌C|𝑊, 𝑦C9I)
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• Equiprobable: response is equally likely to be either item
– Determines hyperplane threshold

• Max-variance: comparison cuts in direction of maximum 
projected variance
– Determines hyperplane weights

Strategy 2: Equiprobable, max-variance (EPMV)

𝐼 𝑊;𝑌C 𝑦C9I = 𝐻(𝑌C|𝑦C9I) − 𝐻(𝑌C|𝑊, 𝑦C9I)

𝑃 𝑝 ≺ 𝑞 = 1/2
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EPMV theory

Ø EPMV approximates InfoGain

Proposition
For equiprobable comparison with hyperplane weights 𝑎/0,

where 𝐿I	
  is a monotonically increasing function.

𝐼 𝑊; 𝑌C 𝑦C9I ≥ 𝐿I 𝑎/0Q ΣZ|KL[\𝑎/0
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EPMV theory

Theorem
For the EPMV query scheme with each selected query 
satisfying 𝑘/0 𝑎/0 ≥ 𝑘]C^ > 0 and stopping threshold 𝜀 > 0, 

consider the stopping time 𝑇b = min 𝑖: ΣZ|hL

\
i < 𝜀 . We have

Furthermore, for any query scheme 𝐸 𝑇b = Ω(𝑑 log Ib).

𝐸 𝑇b = O(𝑑 log Ib +
I

b:pLq
r 𝑑s log Ib).

Ø For large noise constants (𝑘]C^ ≫ 0), EPMV reduces 
the posterior volume at a nearly-optimal rate.



Active embedding search via noisy paired comparisons

EPMV in practice

• Often, one selects pair from pool, rather than 
querying arbitrary hyperplanes

• Select pair that maximizes approximate EPMV utility 
function, for 𝜆 > 0

• Computationally expensive – same utility evaluation 
cost as InfoGain

Prefers max-
variance queries

Prefers 
equiprobable 

queries
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Strategy 3: Mean-cut, max-variance (MCMV)

• Computational bottleneck in EPMV is evaluating
equiprobable property
– Approximate equiprobable property with mean-cut

property i.e. hyperplane passes through posterior mean 

𝑎/0Q 𝐸 𝑊 𝑌C9I − 𝑏/0 = 0

𝐼 𝑊;𝑌C 𝑦C9I = 𝐻(𝑌C|𝑦C9I) − 𝐻(𝑌C|𝑊, 𝑦C9I)
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Proposition
For mean-cut comparison with hyperplane weights 𝑎/0,

where 𝐿s	
  is a monotonically increasing function.

Proposition
For mean-cut comparisons with 𝑎/0Q ΣZ|KL[\𝑎/0 ≫ 0,

MCMV theory

Ø MCMV approximates InfoGain

𝐼 𝑊; 𝑌C 𝑦C9I ≥ 𝐿s 𝑎/0Q ΣZ|KL[\𝑎/0

Ø MCMV approximates EPMV
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MCMV in practice

• Select pair that maximizes utility function, for 𝜆 > 0

• Computational cost is much cheaper than InfoGain
and EPMV
– Scales with sum of # number of posterior samples and 

# candidate pairs, rather than product

Prefers max-
variance queries Prefers mean-cut queries
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Methods overview

Method Advantages Limitations

InfoGain Directly minimizes
posterior volume

Computationally 
expensive

Difficult to
analyze

EPMV Convergence
guarantee

Computationally 
expensive

MCMV Computationally
cheap

No convergence 
guarantee

(future work)
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Simulated results

• Item embedding constructed from Yummly Food-10k 
dataset
– 10,000 food items

– ~1 million human comparisons between items

• Simulated pairwise search
– Noise constant 𝑘/0 estimated from training comparisons

– User preference point drawn uniformly from hypercube, 
𝑑 = 4

(Wilber et al., 2015; 2014)
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Simulated results – baseline methods

• Random
– pairs selected uniformly at random

– user estimated as posterior mean

• GaussCloud
– pairs chosen to approximate Gaussian point cloud around 

estimate, shrinks over multiple stages

– user estimated by approximately solving non-convex program

• ActRank
– pairs selected that intersect feasible region of preference 

points

– query repeated multiple times, majority vote taken

– user estimated as Chebyshev center*

(Jamieson & Nowak, 2011)

(Massimino & Davenport, 2018)

* our addition
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Simulated results - MSE

• Mean-squared error (MSE) 
measures accuracy in estimating 
user preference point

𝑤
𝑤A

error
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Simulated results – Kendall’s Tau distance

• Normalized Kendall’s Tau 
distance for preference ranking 
of 15 randomly selected items
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Takeaways

• First effort to directly model noise in active pairwise 
preference learning for ideal point model
– InfoGain

– Equiprobable max-variance (EPMV)

– Mean-cut max-variance (MCMV)

• Preliminary support for robustness to noise mismatch

• Potential applications
– Advertising, online shopping

– Parameter settings

– Product customization, recipe generation

– Database search (medical records, faces)
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Sensory Information Processing Lab

gregory.canal@gatech.edu

http://siplab.gatech.edu

@GregHCanal

Code available at: https://github.com/siplab-gt/pairsearch 

POSTER #260

TODAY, 6:30 – 9:00 PM, Pacific Ballroom
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Simulated mismatched noise - MSE
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Simulated mismatched noise – Kendall’s Tau


