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Graphs in Machine Learning

Examples:
• Social networks
• Internet
• Biological systems

Graphsmodel pairwise relationships 
between objects



Graphs in Machine Learning

However, graphs may lose 
information about the 
relationships between objects.
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Hypergraphs in Machine Learning

A hypergraph H = (V,E) models 
higher order relationships.

E ⊆ 2V is a set of hyperedges. Each 
hyperedge e ∈ E can contain > 2 
vertices.



Graphs

Model pairwise relationships

Hypergraphs

Model higher-order relationships



Zhou, Huang, and Schölkopf
[NeurIPS 2006]:

• Adapt spectral clustering 
methods to hypergraphs 
by defining a hypergraph 
Laplacian matrix

• demonstrate 
improvements over graphs 
in classification tasks

Hypergraphs in Machine Learning



Do Hypergraphs Model Higher-Order Information?

However, Agarwal et al. [ICML 
2006] show that Zhou et al. are 
really doing inference on graphs



Specifically, Agarwal et al. shows that Zhou et al.’s hypergraph 
Laplacian matrix (and others in the literature) are equal to 
Laplacians of: either clique graph, or star graph

Hyperedge Star graphClique graph

Do Hypergraphs Model Higher-Order Information?



Question: When do hypergraph learning algorithms 
not reduce to graph algorithms?

Do Hypergraphs Model Higher-Order Information?



Question: When do hypergraph learning algorithms 
not reduce to graph algorithms?

Our work: When the hypergraph has edge-dependent 
vertex weights.

Do Hypergraphs Model Higher-Order Information?



What are Edge-Dependent Vertex Weights?

A vertex v has weight γe(v) for each incident 
hyperedge e. 

γe(v) describes the contribution of vertex v
to hyperedge e.
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Example: in co-authorship network, edge-
dependent vertex weights can measure the 
contribution of each author to a paper



Edge-Dependent vs Edge-Independent

In contrast, edge-independent vertex 
weights: γe (v) = γf (v) for all 
hyperedges e, f incident to v
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Most hypergraph literature assumes 
edge-independent vertex weights.
(Typically the vertex weights are 1.)



Part 1: Edge-Independent Vertex Weights

We show: When vertex weights are edge-independent, then random walks 
on hypergraph = random walks on clique graph
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(Formally, the random walks have equal probability transition matrices)



Thus, existing hypergraph Laplacian matrices (e.g. Zhou et al.) are 
equal to Laplacian matrix of a clique graph

This is because these Laplacians are derived from random walks on hypergraphs 
with edge-independent vertex weights
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Part 1: Edge-Independent Vertex Weights



Generalizing Agarwal et al, we give the underlying 
reason that hypergraphs with edge-independent
vertex weights do not utilize higher-order relations
between objects

Part 1: Edge-Independent Vertex Weights

Thus, existing hypergraph Laplacian matrices (e.g. Zhou et al.) are 
equal to Laplacian matrix of a clique graph

This is because these Laplacians are derived from random walks on hypergraphs 
with edge-independent vertex weights



Conversely, we show that random walks on hypergraphs with 
edge-dependent vertex weights ≠ random walks on clique graph.

Formally, there exists such a hypergraph whose random walk is not the same as a 
random walk on clique graph for any choice of edge weights
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Part 2: Edge-Dependent Vertex Weights
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Thus, hypergraphs with edge-dependent vertex 
weights utilize higher-order relations between 
objects

Part 2: Edge-Dependent Vertex Weights
Conversely, we show that random walks on hypergraphs with 
edge-dependent vertex weights ≠ random walks on clique graph.

Formally, there exists such a hypergraph whose random walk is not the same as a 
random walk on clique graph for any choice of edge weights



Motivated by this result, we develop a spectral theory for hypergraphs with 
edge-dependent vertex weights

Part 3: Theory for Edge-Dependent Vertex Weights

Graphs Hypergraphs with edge-dependent
vertex weights

Stationary distribution

Mixing time of 
random walk

Laplacian matrix + 
Cheeger inequality
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Part 4: Experiments

We demonstrate two applications of edge-dependent vertex weights:

1. Ranking authors in citation network
2. Ranking players in a multiplayer video game



Thank you for listening!

Check out our poster: #216 at the Pacific Ballroom, tonight at 6:30 – 9pm
Our full paper is also in ICML 2019 proceedings and on arXiv.

arXiv link: www.arxiv.org/abs/1905.08287


