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Background

Motivation

The DAG learning problem is a vital part in causal inference:

o Let A€ R™*™ be the unknown weighted adjacency matrix of a DAG with
m nodes.

o Given n identically distributed (i.i.d.) samples X* € R™*¢, from a
distribution corresponding to A.
@ Our focus is to recovery the directed acyclic graph (DAG) A from
X ={X - X"}
However, DAG learning is proven to be NP-hard.
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Background

Motivation

Conventional DAG learning methods:

@ Perform score-and-search for discrete variables: with a constraint stating
that the graph must be acyclic.
o Make a parametric (e.g. Gaussian) assumption for continuous variables:
may result in model misspecification.
An equivalent acyclicity constraint was proposed by Zheng et al' (NOTEARS)
for linear Structural Equation Model (SEM), by imposing a continuous penalty

function

h(A) = tr(exp(A o A)) — m.
We followed the framework of [1] to formulate the problem as a continuous
optimization, with the following major contributions:

@ We developed a deep generative model (VAE) parameterized by a
novel graph neural network architecture (DAG-GNN).

@ We proposed an alternative constraint h(A).

© The model is capable to capture complex distributions of data and to
sample from them, and naturally handles various data types.

1Zheng, X., Aragam, B., Ravikumar, P. K., & Xing, E. P. (2018). DAGs with NO TEARS: Continuous Optimization for Structure
Learning. In Advances in Neural Information Processing Systems (pp. 9472-9483).

Y.Yu DAG-GNN: DAG Structure Learning with Graph Neural Networks



Graph Neural Network (GNN)

Proposed Formulations An Alternative DAG Constraint

Model Learning with Variational Autoencoder (VAE)

Our method learns the weighted adjacency matrix A of a DAG by using a deep
generative model through maximizing the evidence lower bound (ELBO)

1 n
Leigo = = Y Lfigos
n k=1
Léiso = — D (9(Z1XH) | P(2)) + Eyzyxny [ log p(X*12)].

The ELBO lends itself to a VAE: given X*, the encoder (inference model)
encodes it into a latent variable Z with density q(Z|X*); and the decoder
(generative model) reconstructs X* from Z with density p(X*|Z).

Inspired by the linear SEM model
X =A"X+Z, or, equivalently, X = (I — A")"'Z,
we propose a new graph neural network architecture for the decoder
X =h((1-A")(2)),
and the corresponding encoder
Z = fi((1 - ATYA(X)).
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Graph Neural Network (GNN)

Proposed Formulations An Alternative DAG Constraint

Graph Neural Network (GNN) Architecture

For the inference model (encoder) Z = f4((I — AT)f(X)): we let £ be a
multilayer perceptron (MLP) and f; be the identity mapping. Then the
variational posterior q(Z|X) is a factored Gaussian with mean Mz and standard
deviation Sz:

[Mz]log Sz] = (I — AT)MLP(X, W', W?) := (I — AT)ReLU(XW")W?.

For the generative model (decoder) X = f((/ — AT)"1A(Z)): we let fi be the
identity mapping and f, be an MLP. Then the likelihood p(X|Z) is a factored
Gaussian with mean My and standard deviation Sx:

[Mx|log Sx] = MLP((1 — AT)"'Z, W3 W*) := ReLU((I — A7) ' zw3)w*.

ENCODER DECODER

M, My >
MP  — AT — 7z (I-ATy — M — %
Sz Sx
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Graph Neural Network (GNN)

Proposed Formulations An Alternative DAG Constraint

A Robust Acyclicity Constraint

To further guarantee that the learnt A is a acyclic, we propose an (alternative)
equality constraint when maximizing the ELBO.

Theorem: Let A € R™*™ be the (possibly negatively) weighted adjacency
matrix of a directed graph. For any o > 0, the graph is acyclic if and only if

h(A) = tr[(/ + Ao A)"] — m = 0.
Here a may be treated as a hyperparameter.

When the eigenvalues of Ao A have a large magnitude, by taking sufficiently
small constant «, (I + @A o A)™ is more stable than exp(Ao A):

Theorem: Let & = ¢/m > 0 for some c. Then for any complex A, we have
1+ a|A)™ < e

In practice, @ depends on m and an estimation of the largest eigenvalue of
Ao A in magnitude.
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Synthetic Datasets

Experiments

Nonlinear and vector value datasets

o Nonlinear synthetic data: generated by X = A" cos(X + 1) + Z:
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o Vector value data X¥ € R™*¢ d > 1: generated by X = A"% + 2,

s ok k 1,2 d
xK = ufx + v 4+ 25 and X = [x![x?| - |x9]:
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Synthetic Datasets
Discrete Benchmark Datasets
Experiments Applications on Real-World Datasets

Discrete value datasets

The proposed model naturally handles discrete variables. Assuming that each
variable has a finite support of cardinality d, let p(X|Z) be a factored
categorical distribution with probability matrix Px, one embedding layer is
added to the encoder and the decoder is modified as:

Px = softmax(MLP((/ — AT) 'z, w? w*)).

The solver is compared with the state-of-the-art exact DAG solver GOPNILP?
on 3 benchmark datasets:

Dataset m Groundtruth  GOPNILP  DAG-GNN

Child 20 -1.27e+4 -1.27e+4 -1.38e+4
Alarm 37 -1.07e+4 -1.12e+4 -1.28e+4
Pigs 441 -3.48e+5 -3.50e+5 -3.69e+5

Table : BIC scores on benchmark datasets of discrete variables.

2Cussens, J., Haws, D., & Studeny, M. (2017). Polyhedral aspects of score equivalence in Bayesian network structure learning.
Mathematical Programming, 164(1-2), 285-324.
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Synthetic Dat
Di

Experiments

Applied to a bioinformatics dataset® for the discovery of a protein signaling
network:

Conect

Method SHD  # Predicted edges =/ .
FGS 22 17
NOTEARS 22 16 e
DAG-GNN 19 18 —

Applied to a knowledge base (KB) schema dataset*. The nodes of which are
relations and the edges indicate whether one relation suggests another.

person/PlaceOfBirth
person/PlaceLivedLocation

person/Nationality
person/Nationality

film/ProducedBy = film/Country
film/ProductionCompanies = film/Country
person/Nationality = person/Languages
person/PlaceOfBirth =  person/Languages
=
=

SSachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal protein-signaling networks derived from
multiparameter single-cell data. Science, 308(5721), 523-529.

4Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., & Gamon, M. (2015). Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1499-1509).
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Synthetic D s
Discrete Benchmark Datasets
Experiments Applications on Real-World Datasets

Thank you for your attention.

The code is available at https://github.com/fishmoon1234/DAG-GNN.

For further details and questions, please come to our poster session:

This evening 06:30 — 09:00 PM, Pacific Ballroom #215.
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