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Estimation is distorted by physiological noise [van Dijk et al.,
2012, Goto et al., 2016].
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Physiological Noise

Estimation is distorted by physiological noise [van Dijk et al.,
2012, Goto et al., 2016].
The noise sources are observable e.g. motion, breathing




| Model Formulation: Goals

— A general formulation of the effects caused by the noise.

— Stronger theoretical guarantees compared tp methods
with hidden variables.



| Model Formulation

— Z denotes the observed fMRI data, and random variable
G, the physiological noise.

— Z| G = g follows a Gaussian graphical model [Yang et al.,
2015] with a parameter matrix, denoted by Q(g):
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— Parameter matrices are additive;

Q(g) = Q2+ R(9).



] Model Formulation: Q(g)

Goals:
e Identifiable parameters
e A general formulation
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e R(g) = 0 for any g satisfying |g| < g*.
e R(g), and ©2(g) are smooth enough to be recovered
by kernel methods.



l Model Formulation: ©(qg)

Goals:
e Identifiable parameters
e A general formulation

Assumptions:
e R(g) = 0 for any g satisfying |g| < g*.
e R(g), and ©2(g) are smooth enough to be recovered
by kernel methods.

Existing assumptions:
e R(g) = 0 [Van Dijk et al., 2012, Power et al., 2014].
e E(R(g)) = 0 [Lee and Liu, 2015, Geng et al., 2018].



J Parameter Estimation

Log Pseudo Likelihood:
 We summarize the varying effects as Mj; := x;; Q;,

where x,.jT. denotes the it row vector of X;.
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] Parameter Estimation
e Pseudo-Profile Likelihood [Fan et al., 2005]

e Suppose that Assumptions are satisfied. Then, for any
e > 0, with probability of at least 1 — ¢, there exists C; > 0,
so that €, shares the same structure with the underlying
true parameter €, if for some constant C; > 0,

C5\/Iogp>)\> —C4 k)%?

ri=4GA < || s||oo,

and n > (64C5C%C3/04)2 log p.



J Parameter Estimation

Sparsistency: The underlying structure can be recovered
with a high probability.

v/n Convergence: The smallest scale of the non-zero
component that the PPL method can distinguish from
zero converges to zero at a rate of v/n.



] Overall Performance

— LR-GGM

— fMRI dataset with control Efz
subjects and those with g
Schizophrenia. g

— Diagnosis using the re- &
covered structure by two
different methods.
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Thank you!
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