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Goal: Partition Function Approximation in GMs

Pairwise binary graphical model (GM) is a joint distribution, factorized by

* computer vision [Freeman et al., 2000], social science [Scott, 2017] and deep learning [Hinton et al., 2006]

P(X) — %exp (<07X> + XTAX) X € {—1, 1}”7 @ cR" Ac gnxn

Partition function Z is essential for inference, but it is NP-hard even to approximate [Jerrum, 1993]

Z = Z exp ((6,x) + x' Ax)

xe{—1,1}"
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xe{—1,1}"
In theory, Z of only a few restricted classes of GM can be approximated in polynomial time

1. Structured GMs: e.g., A is an adjacency matrix of tree/planar graphs [Temperley et al., 1961, Pearl, 1982]

2. GMs with homogeneous parameters: e.g., A, 6 > 0 [Jerrum, 1993; Li et al., 2013; Liu, 2018]
1
max; ‘{AU . Az’j # O}‘ —1

3. GMs under correlation decay/tree uniqueness: e.g., tanh |A4;;| < [Li et al., 2013]
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Goal: Partition Function Approximation in GMs

Pairwise binary graphical model (GM) is a joint distribution, factorized by

« computer vision [Freeman et al., 2000], social science [Scott, 2017] and deep learning [Hinton et al., 2006]

P(X) — %exp (<07X> + XTAX) X € {—1, 1}”7 @ cR" Ac gnxn

Partition function Z is essential for inference, but it is NP-hard even to approximate [Jerrum, 1993]

Z = Z exp ((6,x) + x' Ax)

xe{—1,1}"
In practice, approximation algorithms based on certain local structures/consistency have been used
1. Markov chain Monte Carlo: e.g., annealed importance sampling [Neal, 2001]
2. Variational inference: e.g., belief propagation [Pearl, 1982], mean-field approximation [Parisi, 1988]

3. Variable elimination: e.g., minibucket [Dechter et al., 2003], weighted minibucket [Lie et al., 2011]

However, due to their local nature, they often fails under large global correlation (i.e., large A)
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Goal Partihon Funchon Apprommatbon n GMs

We study the spectral properties
of the parameter matrix A for more
robust approximate inference
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Spectral Approximate Inference for Low-Rank GMs

Provable approximate inference algorithm for low-rank GMs (low-rank A)



Spectral Approximate Inference for Low-Rank GMs

Proposed algorithm using spectral properties of A (8 = 0,rank(A4) = 1, 4 = Avv’)

4 = Z exp (XTAX)
xe{-1,1}" Eigenvalue decomposition
2
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Spectral Approximate Inference for Low-Rank GMs

Proposed algorithm using spectral properties of A (8 = 0,rank(A4) = 1,4 = Avv’)

1. Transform the domain of integration from x to (v, x) using the identity x* Ax = \(v, x)*

n-dimensional integration

4 = Z exp (XTAX)

xe{—1,1}n

= Z exp (A(V,X)Q)
xe{—1,1}"

- Z {x 1y = (v,x)} exp (\y°) 1-dimensional integration
y:<V,X>

‘ y € R
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Spectral Approximate Inference for Low-Rank GMs

Proposed algorithm using spectral properties of A (8 = 0,rank(A4) = 1,4 = Avv’)

1. Transform the domain of integration from x to (v, x) using the identity x* Ax = \(v,x)”

2. Approximate 1-dimensional integration into a polynomial number of summations using histogram

Q

e

xe{—1,1}"

S e

xe{—1,1}"

(XT Ax)

<)\<V, x>2>

> Hx:iy=(v,x)} exp (M)

y:<V,X>

2

yeZ:|y|<|vlli/c

{x:c G (v, x)} exp (A7)
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Spectral Approximate Inference for Low-Rank GMs

Proposed algorithm using spectral properties of A (8 = 0,rank(A4) = 1,4 = Avv’)
1. Transform the domain of integration from x to (v, x) using the identity x” Ax = A(v,x)
2. Approximate 1-dimensional integration into a polynomial number of summations using histogram

3. Compute the weight of the histogram recursively

For x, x’ differing only at x; = 1, x;, = —1
Z= Y exp(xTAx) (v, x) = (v,x') + 20,
xe{—1,1}"
= Z exp (A, x)°
xe{—-1,1}" < )
= x:y = (v,x)} exp (\y? R R N
2 Moy =fraide () (@) = s )+ tia (5 |204/c))

Q

Z {x:c- 7~ (v,x)} exp (A\Y?)

yeZ:|y|<|vlli/c

Weight of histogram
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Spectral Approximate Inference for Low-Rank GMs

Proposed algorithm using spectral properties of A (8 = 0,rank(A4) = 1,4 = Avv’)

A

Transform the domain of integration from x to (v, x) using the identity x” Ax = \(v, x)”

Approximate 1-dimensional integration into a polynomial number of summations using histogram

Compute the weight of the histogram recursively

Compute the approximated Z from using the histogram

Z = Z exp (XTAX)

xe{—-1,1}n»

— Z exp )\<V7X>2
xe{—-1,1}n < )
y={(v,x)

> Hxiegx vxew () = Z

yeZ:|y|<|vll1/c

Q
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Spectral Approximate Inference for Low-Rank GMs

Proposed algorithm using spectral properties of A

« The procedure for rank-1 GMs generalizes to arbitrary GMs by considering the histogram of rank(A)-dimension

Theorem [Park et al., 2019]

For any € > 0, the algorithm outputs Z such that
1-e)Z<Z<(1+¢)Z

in (n/E)O(rank(A)) time
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Spectral Approximate Inference for Low-Rank GMs

Proposed algorithm using spectral properties of A

« The procedure for rank-1 GMs generalizes to arbitrary GMs by considering the histogram of rank(A)-dimension

Theorem [Park et al., 2019]

For any € > 0, the algorithm outputs Z such that
1-e)Z<Z<(1+¢)Z

in (n/e)? 02k fime

« The proposed algorithm is a fully polynomial-time approximation scheme (FPTAS) for rank(A) = O(1)

« However, it is hard to use the algorithm for general GMs due to its complexity, exponential to rank(A)
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Spectral Approximate Inference for Low-Rank GMs

Proposed algorithm using spectral properties of A

« The procedure for rank-1 GMs generalizes to arbitrary GMs by considering the histogram of rank(A)-dimension

Theorem [Park et al., 2019]

For any € > 0, the algorithm outputs Z such that
1-e)Z<Z<(1+¢)Z

in (n/e)? 02k fime

« The proposed algorithm is a fully polynomial-time approximation scheme (FPTAS) for rank(A) = O(1)

« However, it is hard to use the algorithm for general GMs due to its complexity, exponential to rank(A)

Next: we propose an algorithm for general high-rank GMs
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Spectral Approximate Inference for High-Rank GMs

Approximation algorithm for general high-rank GMs



Spectral Approximate Inference for High-Rank GMs

Mean-field approximation

mean-field
Z(ER) "~ 7 (ax ] xmm)x Z (o x ]| xe=m)x Z (@ x [] xe=2)
A T e —

Spectral Approximate Inference 2019.06.13



Spectral Approximate Inference for High-Rank GMs

Mean-field approximation

Z = Z exp (XTAX)

xe{—1,1}"

= 2"ExUniform({_1.1}») €xp (x' Ax) | Transform summation into expectation

mean-field
approximation

Z(@l) ~ Z(-XIW(DX@X%IX—)
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Spectral Approximate Inference for High-Rank GMs

Mean-field approximation

Z = Z exp (XTAX)

xe{—1,1}"

— 2nIE{:xrvUniform({—1,1}”) exp (XTAX)

= 2"Ex~Uniform({—1,1}") €XP (Z Ailvi, X>2> Eigenvalue decomposition
1=1

mean-field
approximation

Z(@l) ~ Z(-XIW(DX@X%IX—)
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Spectral Approximate Inference for High-Rank GMs

Mean-field approximation

Z = Z exp (XTAX)

xe{—1,1}"

- 2nIExr\JUniform({—1,1}"") exp (XTAX)

= 2"E Uniform({ 1.1} €XD (Z )\7;<V7;,X>2>

1=1

Mean-field approximation

n

~ 2" Ex~Uniform({~1,1}n) €XP (Ai(vi’ X>2)
i=1

Product of rank-1 expectations

mean-field
approximation

Z(@l) ~ Z(-XIW(DX@X%IX—)
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Spectral Approximate Inference for High-Rank GMs

Mean-field approximation

Z = Z exp (XTAX)

xe{—1,1}"

— 2nIExr\JUniform({—1,1}"") exXp (XTAX)

_ QnExNUnifOI‘m({_lal}n) exXp (Z )\7, <Vi7 X>2>
=1

~ 2" Ex~Uniform({~1,1}n) €XP (Ai(vi’ X>2)

=1

Product of rank-1 expectations

Mean-field approximation

Controlling the mean-field approximation by varying the spectral property
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Spectral Approximate Inference for High-Rank GMs

Mean-field approximation

Z = Z exp (XTAX)

xe{—1,1}"

— 2nIExr\JUniform({—1,1}"") exXp (XTAX)

_ QnExNUnifOI‘m({_lal}n) exXp (Z )\7, <Vi7 X>2>
=1

~ 2" Ex~Uniform({~1,1}n) €XP (Ai(vi’ X>2)

=1

Product of rank-1 expectations

Mean-field approximation

Controlling the mean-field approximation by varying the spectral property

Free parameter: diagonal matrix D

Z(A) = exp (—trace(D)) Z(A+ D)
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Spectral Approximate Inference for High-Rank GMs

Mean-field approximation with a diagonal matrix D

Z = exp(—trace(D)) Z exp (x' (A + D)x)
xe{—1,1}7

= 2" exp(—trace(D))Ex~Uniform({—1,1}») €XP (XT(A -+ D)x)

= 2" exp(—trace(D))Ex~Uniform({—1,1}n) €XP (Z )\ZD <VZD, X>2>

=1

Goal: Reduce the error
by choosing proper D

~ 2" exp(—trace(D)) H Ex~Uniform({—1,1}n) €XP (AZ'D (vi, X>2>
1=1

Controlling the mean-field approximation by varying the spectral property

Free parameter: diagonal matrix D

Z(A) = exp (—trace(D)) Z(A+ D)
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Spectral Approximate Inference for High-Rank GMs

Mean-field approximation with a diagonal matrix D

Z = exp(—trace(D)) Z exp (x' (A + D)x)
xe{—1,1}7

= 2" exp(—trace(D))Ex~Uniform({—1,1}») €XP (XT(A -+ D)x)

= 2" exp(—trace(D))Ex~Uniform({—1,1}n) €XP (Z )\ZD <VZD, X>2>

=1

Goal: Reduce the error
by choosing proper D

~ 2" exp(—trace(D)) H Ex~Uniform({—1,1}n) €XP (AZ'D (vi, X>2>
1=1

Optimizing diagonal matrix D for reducing the approximation error

Semi-definite programming

maximizep trace(D)
subject to A+ D <0

Spectral Approximate Inference 2019.06.13



Experiments

Comparing our algorithm with popular approximate inference algorithms

« Compared algorithms: Belief propagation [Pearl, 1982], mean-field approximation [Parisi, 1988], minibucket
[Dechter et al., 2003], weighted elimination [Liu et al., 2011]

« Synthetic dataset: Generated by varying the absolute magnitude of A (coupling strength)
« UAI grid dataset: Indices 1-4 are GMs on 10x10 grid graph and indices 5-8 are GMs on 20x20 grid graph

Our algorithm outperforms others even under large global correlation (i.e., large A)

Complete graph on 20 vertices ER graph on 20 vertices: p=0.5 ER graph on 20 vertices: p=0.7 UAI grid dataset
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Conclusion

We develop partition function approximation algorithms using spectral properties of the parameter matrix
« For low-rank GMs, we propose a provable algorithm
« For high-rank GMs, we propose a mean-field type algorithm
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