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Undirected Probabilistic Graphical Models

• Represent conditional 
independence relations among 
random variables in the form of 
a graph.

• Any random variable 
conditioned on the random 
variable it has an edge with, is 
independent of all the remaining 
random variables.
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Why Graphical Models?

• Identify interactions among 
variables in large systems. (e.g. 
Gene Interaction Networks.)

• Makes inference in large scale 
systems tractable.
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Gaussian Graphical Models

• - Jointly 
Gaussian random variables with 
covariance      .

• Support of inverse covariance        
gives the graphical model 
structure.

X    X 0 0 0    0 0
X    X X 0    0    0    0
0    X X X 0    X 0
0    0 X X X    0 0
0    0 0 X X    0 0
0 0 X 0 0 X X
0    0 0 0 0    X X

=

X₁ X2

X3

X4X5

X7

X6



Effect Of Noise

• Additive Gaussian noise in the 
random variables breaks down 
the conditional independence.

• Intuitively – Noisy samples do 
not convey the whole 
information.
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Effect Of Noise

• Additive Gaussian noise in the 
random variables breaks down 
the conditional independence.

• Example: if X – Y – Z is a Markov 
chain, then X and Z are no longer 
independent when conditioned 
on a noisy version of Y.
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Problem Statement

• Suppose the graphical model 
have a tree structure       . 

• We observe                            . 
where       is an unknown 
positive diagonal noise matrix.

• Goal:  recover        given       .                               
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Bad News! Unidentifiability

• Even for arbitrarily small noise 
the problem is unidentifiable!

• There are  covariance matrices 
that differ only on diagonal 
entries, but their inverses have 
different sparsity pattern.
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Good News! Limited Unidentifiability 

• The ambiguity in tree structure 
is highly limited.

• The only ambiguity is between a 
leaf node and its immediate 
neighbor. 10
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Trees formed by permuting nodes within the dotted regions
form an equivalence class       .



Proof - Key Idea

• Off-diagonal covariance entries 
have information about the tree 
structure.

• They can be used to categorize 
any set of 4 nodes as a star or 
non-star.

• Non-star – Exactly 2 nodes lie in 
one subtree.
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Node Set Classification

{0, 1, 3, 7} Non-Star

{7, 8, 9, 10} Non-Star

{14, 2, 10, 11} Non-Star

{7, 9, 1, 6} Star

{1, 14, 10, 6} Star



Proof – Key Idea

• Categorization of any set of 4 
nodes as star/non-star defines 
all possible partitions in 2 
subtrees with minimum 2 nodes.

• Thus the off diagonal elements 
define the tree upto the 
equivalence class        .
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Identifiability with Side Information 

• Diagonal Majorization Condition – If the precision matrix is known to 
have diagonal entries greater than the absolute off diagonal entries.

• Minimum Eigenvalue Condition – If a lower bound on the minimum 
eigenvalue of the covariance is known and the noise variance is 
smaller than this lower bound.



Cluster Tree
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Algorithm - Initialization

• Split the tree in 2 subtrees.

• Find the root equivalence 
equivalence cluster of each 
subtree.
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Algorithm – Recursion step



Conclusion

• Unidentifiability of learning tree structured Gaussian Graphical 
Models in presence of noise.

• Identifiability conditions with side information.

• Algorithm to find the tree structure.


