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What is Tensor?

Vector Matrix Tensor o where to eat: (user, location, action)

—

Capture higher order interactions inside the data

Color images

Spatiotemporal recommendation

Examples of 3-order tensors
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Why needs Tensor Completion?

Color images
Spatiotemporal recommendation

where to eat: (user, location, action)

Remote sensing data

.

Image inpainting Missing super-pixel / bands Predict unknown triplet

.

Tensor completion: predict missing entries in the tensor

On 2-order tensor: reduce to matrix completion =
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How? - Overlapped nuclear norm

Nuclear norm ||X||. [candes & Recht, 2009]

« Summation of all singular values of a matrix

» convex envelope of the matrix rank function

Tensor: overlapped nuclear norm [Tomioka et al., 2010]

Definition 1. For a M-order tensor X, the overlapped
nuclear norm s [|X||pvertap = w1 A [|X iy [|4r Where

=

{A\,. =0} are hyperparameters.

*  X(m unfold tensor along with mth mode

» encourage all unfolded matrix to be low-rank

unfolding operations

folding is the inverse of unfolding 4
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Tensor Completion with Overlapped Nuclear Norm pomioka et al., 2010

* Redundancy and correlations — low-rank approach is a power method in tensor completion

» Overlapped nuclear norm is a sound approach with statistical and convergence guarantee (compared with

other tensor low-rank approaches [Tomioka et al., 2011; Liu et al., 2013; Guo et al., 2017])

1 2
min o || Pa (X = 015 + D A [[ X
d=1

\ / \ /
| |

Squared loss on

Overlapped nuclear norm
observed entries
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However, two critical limitations
1. Inferior empirical performance

* nuclear norm over penalize singular values
2. Expensive optimization

« full tensor needs to be maintained due to

folding / unfolding operations

5



Proposed NORT: Nonconvex regularized tensor completion

Our contributions, propose NORT algorithm
1. Improve the performance of overlapped nuclear norm
« Extend nonconvex regularization with overlapped nuclear norm
2. Speedup optimization with structure aware proximal iterations
« Cheap iteration: propose a special way to do matrix multiplication without tensor folding/unfolding

« Fast convergence: enhance proximal average with adaptive momentum
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Improve Performance: nonconvex regularization

Nonconvex regularization
A

|
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Objective: 1111%1115'(1} = 2 | Pa(X — O)||% + Z 5@(:‘:{&})- where o¢(X) = Z k(o (X)),
d=1 =1
5 Common examples of x(o;(X)). Here, # is a constant. For capped-{,
' ' ' | ' ' ' LSP and MCP, # > 0; for SCAD, @ > 2; and for TNN, ¢ is a positive
18} w— - integer.
—GP
16T . (X
A w(oi(X))
—— Laplace| | nuclear norm a:(X)
—LSP ] capped-f, min(a;(X), 0)
~———8CAD |1 LSP log(e:(X)/a + 1)
oi(X) ifi>#
i : | INN[27] {l’l otherwise
oi(X) if oy (X) < 1
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SCAD 2B e X L ifl < a(X) <6
(0+1)% /2 otherwise
0 : : : : : : 2 ,
@2 As o 05 0 05 1 15 2 o;(X) —af2e if o (X) <0
McP { 67 /2 otherwise

Less penalize large singular values, which are

more informative
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Speedup optimization: Structure-aware proximal iterations

Proximal average algorithm [Bauschke et al., 2008; Yu, 2013]

maintain low-rank factorization

xt=

| X
It — E ;Hﬂ
sparse plus low-rank structure
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Zt — xt - ;Vf(:xt),

Yo =proxa,, (Z4), i=1,...,K

i

proximal step with nonconvex
regularization

(i) matrix multiplications

L - 1
(UH(V) ) — — Py (X,~0)

A

I

S =
™Mo

1

i

utilize sparse plus low-rank structure to efficient
compute proximal step (Proposition 3.2)

1__. : 1 - : :
(fz*t)(z'}bz 5U:[(V:)Tb1+5;[(U~;‘(Vif)<f>mb

Y = prox; (%] (i)

Needs folding/unfolding: full tensor computation

Copyright ©2018 4Paradigm All Rights Reserved.

1
—;[Pn (X =0)] b,

No folding/unfolding: fast and need less memory
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Table 1. Comparison of the proposed NORT (Algorithm 1) and direct implementations of the PA algorithm.

output X, .
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per-iteration time complexity space convergence
E direct O(I« Zil I;) O(1y) slow
D i ] i i D i
o NORT | O(}_;2, Zj;éi(jii+%j)ktkt+lfx+”ﬂ”1(kt +k1) | 022, Ej;éi(f%—l_j%)ktfx—{_nﬂul) fast
—
O
@) Algorithm 1 NOnconvex Regularized Tensor (NORT). Theorem 3.5. The sequence {X.} generated from Algo-
O 1: initialize Xo=2X;=0,7 > p+DLand v;,p € (0,1);  rithm 1 has at least one limit point, and all limits points are
2: fort =1,...,T do critical points of F..(X).
8 3: ¥t+1 = % Z?il( §+1( §+1)T)(3);
@) 4: X = :}:t + 3 (X — Xe—1); .
O 50 if Fr(X;) < F(X;) then Theorem 3.7. Let r; = F.(X;) — F™". If F. has the
9 ?2 l Vi =X, Y41 = min( 3, 1); adaptive uniformized KL property, for a sufficiently large tg, we have
. else
O g Vi = Xoy Yer1 = pyes momentum ;. If B =1, r¢ reduces to zero in finite steps;
: i — d,C? \t— 2(14p)>
—GC) 13- eznd lf\? LPo (Vi —0) 2. If €3, 1), < (1Firez)" 01t where dy = [Tnp) '
o ; t =Vi— Po(V:—0); 1 C 1/(1-28) =
I._. // compute P, (V¢ — O) using sparse tensor format; 3. IfBE(0,5), re < ( (Qt;iln)dzil—ﬁﬁ} ) where dz
11: fori=1,...,Ddo min{ =L c 2‘23:_2 — 1)rg L
% 12: X, = prox, ,((Z:)(;)): // keep as ui(vi) T, {lec’ 1_2’8( ITto}
13:  end for '
pd 14: end for « tensorsize: I; X I, X I3

« the speedup can be more the 100x on large tensors




Experiments: synthetic data

small I3: ¢ = IE)U, sparsity: 3.09%

large I5: ¢ = 40, sparsity:2.70%

RMSE space (MB) time (sec) RMSE space (MB) time (sec)
convex PA-APG | 0.0149+0.0011 | 302.44+0.1 | 2131.74+£419.9 || 0.0098-+0.0001 | 4804.54+598.2 | 6196.4+2033.4
(nonconvex) | GDPAN | 0.0103+0.0001 | 171.54+2.2 665.44+99 8 0.0006£0.0001 | 3243.34+489.6 | 3670.44+225.8
capped-£, sNORT | 0.0103-£0.0001 14.0+0.8 27.945.1 0.0006+0.0001 44.6+0.3 575.94+70.9
NORT 0.0103-+0.0001 14.940.9 5.9+1.6 0.0006+0.0001 66.3+0.6 89.44+13.4
(nonconvex) | GDPAN | 0.010440.0001 172.24+1.5 654.1+214.7 0.0006+£0.0001 | 3009.3+376.2 | 3794.04+419.5
LSP sNORT | 0.0104-£0.0001 14.440.1 27.945.7 0.0006+0.0001 44.6+0.2 544.2475.5
NORT 0.0104+0.0001 15.140.1 5.8+2.8 0.0006+0.0001 62.1+0.5 81.31+24.9
(nonconvex) | GDPAN | 0.010440.0001 172.14+1.6 615.0+140.9 0.0006£0.0001 | 3009.24+412.2 | 3922.94280.1
TNN sNORT | 0.0104-+0.0001 14.440.1 26.2+4.0 0.0006+0.0001 44.7+0.2 554.74+44.1
NORT 0.0103-0.0001 15.140.1 5.3+1.5 0.0006+0.0001 63.1+0.6 78.0+9.4

« GDPAN is the direct proximal average algorithm

* Nonconvex regularization offers much lower testing RMSEs

 NORT is much faster, needs much less memory and achieves much lower testing RMSEs
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Experiments: real data sets

Table 4. Testing RMSEs (x 10~ 1) on color images.

rice tree windows
convex | ADMM | 0.680+0.003 | 0.915+0.005 | 0.709+0.004
PA-APG | 0.583+0.016 | 0.48840.007 | 0.585+0.002
FaLRTC | 0.5764+0.004 | 0.494+0.011 | 0.567+0.005
FFW 0.634+0.003 | 0.599+0.005 | 0.772+0.004
TR-MM | 0.5964+0.005 | 0.5154+0.011 | 0.634+0.002
TenNN 0.647+0.004 | 0.562+0.004 | 0.586+0.003
factor- RP 0.5414+0.011 | 0.52440.010 | 0.3884+0.026
1zation TMac 1.9234+0.005 | 1.750+0.006 | 1.31340.005
CP-OPT | 0.91240.086 | 0.73340.060 | 0.9644+0.102
TMac-TT | 0.729+0.022 | 0.697+0.147 | 1.0454+0.107
noncvx | GDPAN | 0.467+0.002 | 0.388+0.012 | 0.296-£0.007
NORT 0.468+0.001 | 0.386+0.009 | 0.297+0.007

 NORT is fast and achieves lower testing RMSEs compared with other tensor low-rank approaches
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« Same observations are on experiments with remote sensing data and multi-relational data (see our paper)
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Thanks.

* Questions: yaoqguanming@4paradigm.com

« Codes: available on my Github
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