Breaking the gridlock in Mixture-of-Experts: Consistent and Efficient algorithms

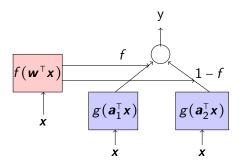
Ashok Vardhan Makkuva

University of Illinois at Urbana-Champaign

Joint work with Sewoong Oh, Sreeram Kannan, Pramod Viswanath

Mixture-of-Experts (MoE)

Jacobs, Jordan, Nowlan and Hinton, 1991



 $f = \text{sigmoid}, \ g = \text{linear}, \text{tanh}, \text{ReLU}, \text{leakyReLU}$

Motivation-I: Modern relevance of MoE

Outrageously large neural networks

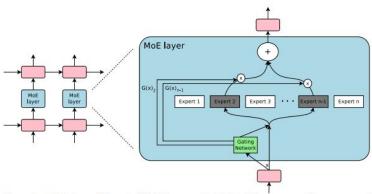


Figure 1: A Mixture of Experts (MoE) layer embedded within a recurrent language model. In this case, the sparse gating function selects two experts to perform computations. Their outputs are modulated by the outputs of the gating network.

Motivation-II: Gated RNNs

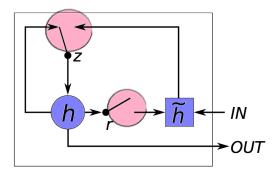
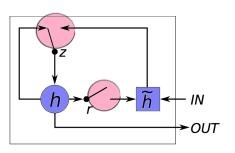


Figure: Gated Recurrent Unit (GRU)

Key features:

- Gating mechanism
- Long term memory

Motivation-II: GRU



• Gates: $z_t, r_t \in [0,1]^d$ depend on the input x_t and the past h_{t-1}

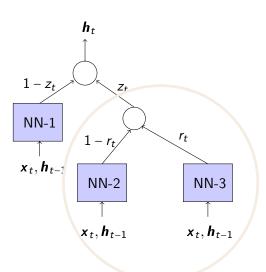
• States: $h_t, \tilde{h}_t \in \mathbb{R}^d$

Update equations for each t:

$$\begin{aligned} h_t &= \left(1 - z_t\right) \odot h_{t-1} + z_t \odot \tilde{h}_t \\ \tilde{h}_t &= f\left(Ax_t + r_t \odot Bh_{t-1}\right) \end{aligned}$$

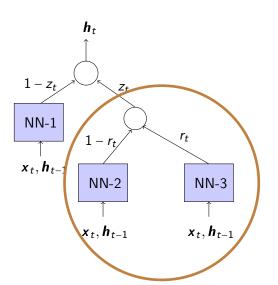
MoE: Building blocks of GRU

$$h_t = (1 - z_t) \odot h_{t-1} + z_t \odot (1 - r_t) \odot f(Ax_t) + z_t \odot r_t \odot f(Ax_t + Bh_{t-1})$$



MoE: Building blocks of GRU

$$h_t = (1 - z_t) \odot h_{t-1} + z_t \odot (1 - r_t) \odot f(Ax_t) + z_t \odot r_t \odot f(Ax_t + Bh_{t-1})$$



What is known about MoE?

Adaptive mixtures of local experts

RA Jacobs, MI Jordan, SJ Nowlan, GE Hinton Neural computation 3 (1), 79-87

Sharing clusters among related groups: Hierarchical Dirichlet processes

YW Teh, MI Jordan, MJ Beal, DM Blei Advances in neural information processing systems, 1385-1392

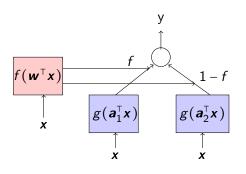
Hierarchical mixtures of experts and the EM algorithm

MI Jordan, RA Jacobs Neural computation 6 (2), 181-214 3663 1991 3273 2005 3090 1994

• No provable learning algorithms for parameters 2 ©

¹20 years of MoE, MoE: a literature survey

Open problem for 25+ years



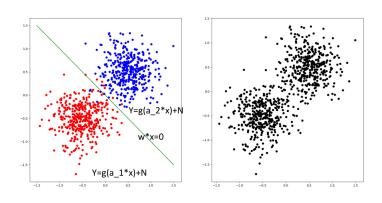
$$\Leftrightarrow P_{y|\boldsymbol{x}} = f(\boldsymbol{w}^{\top}\boldsymbol{x}) \cdot \mathcal{N}(y|g(\boldsymbol{a}_{1}^{\top}\boldsymbol{x}), \sigma^{2}) + (1 - f(\boldsymbol{w}^{\top}\boldsymbol{x})) \cdot \mathcal{N}(y|g(\boldsymbol{a}_{2}^{\top}\boldsymbol{x}), \sigma^{2})$$

Open question

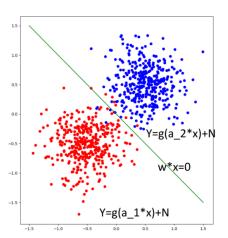
Given n i.i.d. samples $(x^{(i)}, y^{(i)})$, does there exist an efficient learning algorithm with provable theoretical guarantees to learn the regressors a_1 , a_2 and the gating parameter w?

Modular structure

Mixture of classification (\boldsymbol{w}) and regression ($\boldsymbol{a}_1, \boldsymbol{a}_2$) problems



Key observation



Key observation

If we know the regressors, learning the gating parameter is easy and vice-versa. How to break the gridlock?

Breaking the gridlock: An overview

Recall the model for MoE:

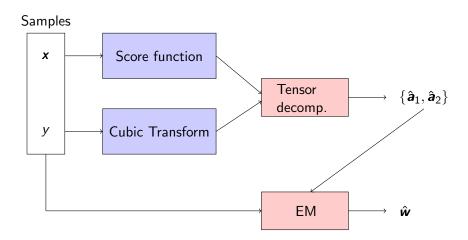
$$P_{y|\mathbf{x}} = f(\mathbf{w}^{\mathsf{T}}\mathbf{x}) \cdot \mathcal{N}(y|g(\mathbf{a}_{1}^{\mathsf{T}}\mathbf{x}), \sigma^{2}) + (1 - f(\mathbf{w}^{\mathsf{T}}\mathbf{x})) \cdot \mathcal{N}(y|g(\mathbf{a}_{2}^{\mathsf{T}}\mathbf{x}), \sigma^{2})$$

Main message

We propose a novel algorithm with first recoverable guarantees

- We learn (a_1, a_2) and w separately
- First recover (a_1, a_2) without knowing w at all
- Later learn w using traditional methods like EM
- Global consistency guarantees (population setting)

Algorithm



Comparison with EM

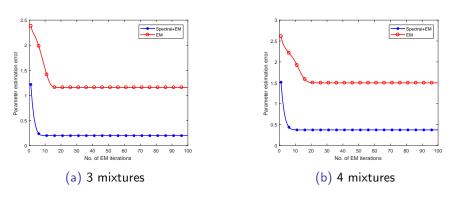
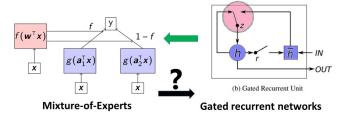


Figure: Plot of parameter estimation error

Summary

- Algorithmic innovation: First provably consistent algorithms for MoE in 25+ years
- Global convergence: Our algorithms work with global initializations

Conclusion



- 1. Theoretical understanding ✓
- 2. Novel algorithms ✓

- 1. Theoretical understanding?
- 2. Algorithms?

Poster #210 Thank you!

Poster #210 Thank you!