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Mixture-of-Experts (MoE)

@ Jacobs, Jordan, Nowlan and Hinton, 1991
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f =sigmoid, g = linear, tanh, ReLLU, leakyReLLU



Motivation-l: Modern relevance of MoE

@ Outrageously large neural networks

. /MoE layer
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Figure 1: A Mixture of Experts (MoE) layer embedded within a recurrent language model. In this

case, the sparse gating function selects two experts to perform computations. Their outputs are
modulated by the outputs of the gating network.



Motivation-1l: Gated RNNs
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Figure: Gated Recurrent Unit (GRU)

Key features:
@ Gating mechanism

@ Long term memory



Motivation-1I: GRU
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e Gates: z;,r € [0, 1]d depend on the input x; and the past h;_1
o States: h;, hy e RY

Update equations for each t:

ht = (1_Zt)®ht_1+zt®i7t
};t = f(AXt +r: © Bht_l)



MoE: Building blocks of GRU
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MoE: Building blocks of GRU

ht = (1 - Zt) © ht_]_ +2z: © (1 - rt) © f(AXt) +Zz: Oy © f(AXt + Bht_l)




What is known about MoE?

Adaptive mixtures of local experts @ 1991
RA Jacobs, Ml Jordan, SJ Nowlan, GE Hinton

Neural computation 3 (1), 79-87

Sharing clusters among related groups: Hierarchical Dirichlet processes 3273 2005
YW Teh, Ml Jordan, MJ Beal, DM Blei
Advances in neural information processing systems, 1365-1392

Hierarchical mixtures of experts and the EM algorithm
MI Jordan, RA Jacobs
Neural computation 6 (2), 161-214

1994

@ No provable learning algorithms for parameters! @

120 years of MoE, MoE: a literature survey



Open problem for 25+ years
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= Py = f(w'x)-N(ylg(ajx).o%) + (1~ f(w'x)) - N(ylg(azx),0?)

Open question

Given n i.i.d. samples (x(),y()) does there exist an efficient learning
algorithm with provable theoretical guarantees to learn the regressors
aj, a> and the gating parameter w?




Modular structure
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Mixture of classification (w) and regression (a1, a») problems
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Key observation
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Key observation

If we know the regressors, learning the gating parameter is easy and
vice-versa. How to break the gridlock?




Breaking the gridlock: An overview

Recall the model for MoE:

Pyjx = F(w'x) - N(ylg(aix),o%) + (1~ f(w'x)) - N (ylg(arx), o)

Main message
We propose a novel algorithm with first recoverable guarantees

@ We learn (a1,a») and w separately
o First recover (ay, ay) without knowing w at all
o Later learn w using traditional methods like EM

@ Global consistency guarantees (population setting)



Algorithm
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Parameter estimation error

Comparison with EM

Parameter estimation error
o
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Figure: Plot of parameter estimation error
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Summary

@ Algorithmic innovation: First provably consistent algorithms for MoE
in 25+ years

@ Global convergence: Our algorithms work with global initializations
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Mixture-of-Experts

1. Theoretical understanding v’

2. Novel algorithms v

l (b) Gated Recurrent Unit

Gated recurrent networks

1. Theoretical understanding ?
2. Algorithms ?
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