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Adaptive Preconditioning in ML

e Optimization in ML: training neural nets — minimizing non-convex losses

e Diagonal Adaptive Optimizers: each coordinate has a different learning rate
according to past gradients e,
o AdaGrad, Adam, RMSProp
o Works well in practice

Theory is only known for
convex losses at the time




Adaptive Preconditioning: Intuition

Learns the correct basis,
Doesn’t adapt to a rotated basis  faster optimization
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Can we have a linear time algorithm?



Our Results

e GGT: a new adaptive optimizer
Efficient full-matrix (low-rank) AdaGrad

e Experiments: faster training and sometimes better generalization on vision
and language tasks
e GPU-friendly Implementation

e Theory: “adaptive” convergence rate on convex and non-convex functions
e Up to O(1/Vd) faster than SGD



The GGT Trick

e Scalar Case:

(axa) 2 =ax(axa)™®?xa

e Matrix Case:
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The GGT Trick

Scalar Case:

Matrix Case:
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Efficient implementation
on the GPU!




Large-Scale Experiments (CIFAR-10, PTB)
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Better and faster
training

Initial acceleration in
optimizing the LSTM
Better validation ppl
for the LSTM



Theory

e Define the adapitivity ratio:
9 AdaGrad Regret

~ worst-case OGD Regret

1
2
[DHS10]: U~ € [ﬁ, \/E] for diagonal AdaGrad, sometimes smaller for full-matrix AdaGrad
- 1202
e Non-Convex reduction: GGT" converges in O(—;—) steps
€

e First step towards analyzing adaptive methods in non-convex optimization

* |dealized modification of GGT for analysis. See paper for details.



A note on the important parameters
1 1

e Improving dependence on epsilon: >

In practice € ~ (.1, leading to an improvement of about 3.1

e |Instead our improvement can be as large as the dimension, which can be 1e7
for language models

e Huge untapped potential for large-scale optimization!
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