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Overview
● Preliminaries
● Kernel ridge regression
● Kernel   -means clustering
● Query-efficient algorithm for mixtures of Gaussians



● Many machine learning tasks can be expressed as a function of the inner 
product matrix     of the data points (rather than the design matrix)

● Implicitly apply the exact same algorithm to the data set under a feature map 
through the use of a kernel function

● The analogue of the inner product matrix    : is called the kernel matrix 

Kernel Method



Kernel Query Complexity
● In this work, we study kernel query complexity: the number of entries of the 

kernel matrix      read



Kernel Ridge Regression (KRR)
● Kernel method applied to ridge regression

● Approximation guarantee



Query-Efficient Algorithms
● State of the art approximation algorithms have sublinear and data-dependent 

runtime and query complexity (Musco and Musco NeurIPS 2017, El Alaoui 
and Mahoney NeurIPS 2015)

● Sample                 rows proportionally to ridge leverage scores where

● Query complexity



Contribution 1: Tight Lower Bounds for KRR

Theorem (informal)
Any randomized algorithm computing a             -approximate KRR solution with 
probability at least 2/3 makes at least                    kernel queries.

● Effective against randomized and adaptive (data-dependent) algorithms
● Tight up to logarithmic factors



Contribution 1: Tight Lower Bounds for KRR

Proof (sketch)
● By Yao’s minimax principle, suffices to prove for deterministic algorithms on a 

hard input distribution
● Our hard input distribution: all ones vector for the target vector    , 

regularization 



Contribution 1: Tight Lower Bounds for KRR
● Data distribution             for the kernel matrix:



Contribution 1: Tight Lower Bounds for KRR
● Inner product matrix of standard basis vectors,              copies of      for the 

first           coordinates, and             copies of the next 
● Half of the data points belong to “large clusters”, the other half belong to 

“small clusters”
● In order to label a row as “large cluster” or “small cluster”, any algorithm must 

read                entries of the row
● In order to label a constant fraction of rows, need to read                     entries 

of the kernel matrix



Contribution 1: Tight Lower Bounds for KRR

Lemma
Any randomized algorithm for labeling a constant fraction of rows of a kernel 
matrix drawn from             must read                   kernel entries. 

● Proven using standard techniques



Contribution 1: Tight Lower Bounds for KRR

Reduction

Main Idea: one can just read off the labels of all the rows from 
the optimal KRR solution, and one can do this for a constant 
fraction of the rows from an approximate KRR solution. 



Contribution 1: Tight Lower Bounds for KRR
● Let                           be the SVD of the kernel matrix
● The columns are the eigenvectors of      and the cluster size       is the 

corresponding eigenvalue, and these are orthogonal
● The target vector is the sum of these columns



Contribution 1: Tight Lower Bounds for KRR



Contribution 1: Tight Lower Bounds for KRR

Optimal KRR solution



Contribution 1: Tight Lower Bounds for KRR

Optimal KRR solution

Thus, the entries are separated by a multiplicative                      factor. 



Contribution 1: Tight Lower Bounds for KRR

Approximate KRR solution
● By averaging the approximation guarantee over the coordinates, we can still 

distinguish the cluster sizes for a constant fraction of the coordinates



Contribution 1: Tight Lower Bounds for KRR



Contribution 1: Tight Lower Bounds for KRR

Remarks
● Settles a variant of an open question of El Alaoui and Mahoney: is the 

effective statistical dimension a lower bound on the query complexity? (they 
consider an approximation guarantee on the statistical risk instead of the 
argmin)

● Techniques extend to any indicator kernel function, including all kernels that 
are a function of the inner product or Euclidean distance

● Lower bound is easily modified to an instance where the top        singular 
values scales as the regularization 



Kernel   -means Clustering (KKMC) 
● Kernel method applied to   -means clustering
● Objective: a partition of the data set into    clusters that minimizes the sum of 

squared distances to the nearest centroid
● For a feature map                          , objective function is   



Contribution 2: Tight Lower Bounds for KKMC

Theorem (informal)
Any randomized algorithm computing a             -approximate KKMC solution with 
probability at least 2/3 makes at least                    kernel queries.

● Effective against randomized and adaptive (data-dependent) algorithms
● Tight up to logarithmic factors



Contribution 2: Tight Lower Bounds for KKMC
● Similar techniques, hard distribution is sums of standard basis vectors



Kernel   -means Clustering of Mixtures of Gaussians 
● For input distributions encountered in practice, previous lower bound may be 

pessimistic
● We show that for a mixture of     isotropic Gaussians, we can solve KKMC in 

only               kernel queries



Contribution 3: Query-Efficient Algorithm for Mixtures 
of Gaussians 

Theorem (informal)
Given a mixture of     Gaussians with mean separation          , there exists a 
randomized algorithm which returns a              - approximate   -means clustering 
solution reading               kernel queries with probability at least 2/3.  



Contribution 3: Query-Efficient Algorithm for Mixtures 
of Gaussians 

Proof (sketch)
● Learn the means of the Gaussians in                                samples (Regev and 

Vijayaraghavan, FOCS 2017)
● Use the learned means to identify the true means of                       Gaussians
● Subtract off Gaussians from the same mean from each other to obtain 

zero-mean Gaussians
● Use the zero-mean Gaussians to sketch the data set in                          

samples 
● Cluster the sketched data set


