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Kernel Method

e Many machine learning tasks can be expressed as a function of the inner
product matrix (zof the data points (rather than the design matrix)
e Implicitly apply the exact same algorithm to the data set under a feature map

through the use of a kernel function
e The analogue of the inner product matrix (z is called the kernel matrix K



Kernel Query Complexity

e In this work, we study kernel query complexity. the number of entries of the
kernel matrix K read




Kernel Ridge Regression (KRR)

e Kernel method applied to ridge regression

o = argmin||Koa — z||5 + Aa'Ka
acR"?

= (K + \L,) 'z

e Approximation guarantee

& — aopslly < €llaoptl|



Query-Efficient Algorithms

State of the art approximation algorithms have sublinear and data-dependent
runtime and query complexity (Musco and Musco NeurlPS 2017, El Alaoui
and Mahoney NeurlPS 2015)

Sample O(d;/¢) rows proportionally to ridge leverage scores where

o2

P (K) = tr (K(K + AIn)_l) = ; P

Query complexity O(nd2; /<)



Contribution 1: Tight Lower Bounds for KRR

Theorem (informal)

Any randomized algorithm computing a (1 + €)-approximate KRR solution with
probability at least 2/3 makes at least Q(nd2; /€) kernel queries.

e Effective against randomized and adaptive (data-dependent) algorithms
e Tight up to logarithmic factors



Contribution 1: Tight Lower Bounds for KRR
Proof (sketch)

e By Yao’s minimax principle, suffices to prove for deterministic algorithms on a

hard input distribution
e Our hard input distribution: all ones vector for the target vector z,

regularization A = n/k



Contribution 1: Tight Lower Bounds for KRR

e Data distribution KRR for the kernel matrix:
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Contribution 1: Tight Lower Bounds for KRR

e Inner product matrix of standard basis vectors, 2na/k copies of e; for the
first k/4e coordinates, and ne/k copies of the next k/2¢

e Half of the data points belong to “large clusters”, the other half belong to
“small clusters”

e In order to label a row as “large cluster” or “small cluster”, any algorithm must
read $2(k /&) entries of the row

e |n order to label a constant fraction of rows, need to read Q(nk/e) entries
of the kernel matrix



Contribution 1: Tight Lower Bounds for KRR

Lemma

Any randomized algorithm for labeling a constant fraction of rows of a kernel
matrix drawn from pugrg must read Q(nk/e)kemnel entries.

e Proven using standard techniques



Contribution 1: Tight Lower Bounds for KRR

Reduction

Main ldea: one can just read off the labels of all the rows from
the optimal KRR solution, and one can do this for a constant
fraction of the rows from an approximate KRR solution.



Contribution 1: Tight Lower Bounds for KRR

e Let K = UXU' be the SVD of the kernel matrix

e The columns are the eigenvectors of K and the cluster size N is the
corresponding eigenvalue, and these are orthogonal

e The target vector is the sum of these columns

z= ) /mUe
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Contribution 1: Tight Lower Bounds for KRR
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Contribution 1: Tight Lower Bounds for KRR

Optimal KRR solution
(K + AI )—

aopt

2

jE€[3J/4]

Ty

TS (\/7Ueﬂ)



Contribution 1: Tight Lower Bounds for KRR
Optimal KRR solution

- (2ne/k +n/k)~! = 1k+/_22 if row 4 has block size 2ne/k
e, aO — n ; . .
¢ oR (ne/k +n/k)~1 = ’f/? if row ¢ has block size ne/k

Thus, the entries are separated by a multiplicative (1 &£ €2(¢)) factor.



Contribution 1: Tight Lower Bounds for KRR

Approximate KRR solution

e By averaging the approximation guarantee over the coordinates, we can still
distinguish the cluster sizes for a constant fraction of the coordinates

l& — aoptl; < ellaoptl,



Contribution 1: Tight Lower Bounds for KRR
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Contribution 1: Tight Lower Bounds for KRR

Remarks

Settles a variant of an open question of El Alaoui and Mahoney: is the
effective statistical dimension a lower bound on the query complexity? (they
consider an approximation guarantee on the statistical risk instead of the
argmin)

Techniques extend to any indicator kernel function, including all kernels that
are a function of the inner product or Euclidean distance

Lower bound is easily modified to an instance where the top dg‘ff singular
values scales as the regularization \



Kernel k-means Clustering (KKMC)

e Kernel method applied to k-means clustering
e Obijective: a partition of the data set into k clusters that minimizes the sum of

squared distances to the nearest centroid
e Forafeature map ¢ : X — JF, objective function is

k
cost(C) = Z Z |eo(x) — ”jHi
J=1xeC};
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Contribution 2: Tight Lower Bounds for KKMC

Theorem (informal)

Any randomized algorithm computing a (1 + &)-approximate KKMC solution with
probability at least 2/3 makes at least }(nk /&) kernel queries.

e Effective against randomized and adaptive (data-dependent) algorithms
e Tight up to logarithmic factors



Contribution 2: Tight Lower Bounds for KKMC

e Similar techniques, hard distribution is sums of standard basis vectors
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Kernel k-means Clustering of Mixtures of Gaussians

e For input distributions encountered in practice, previous lower bound may be
pessimistic
e \We show that for a mixture of k isotropic Gaussians, we can solve KKMC in

only O(n/¢) kernel queries



Contribution 3: Query-Efficient Algorithm for Mixtures
of Gaussians

Theorem (informal)

~

Given a mixture of k Gaussians with mean separation O(0o) there exists a
randomized algorithm which returns a (1+¢)- approximate k-means clustering
solution reading O(n/€) kernel queries with probability at least 2/3.



Contribution 3: Query-Efficient Algorithm for Mixtures
of Gaussians

Proof (sketch)

e Learn the means of the Gaussians in poly(k, 1/¢, d)samples (Regev and
Vijayaraghavan, FOCS 2017)

e Use the learned means to identify the true means of O(logn/e) Gaussians

e Subtract off Gaussians from the same mean from each other to obtain
zero-mean Gaussians

e Use the zero-mean Gaussians to sketch the data setin O(nlogn/e)
samples

e Cluster the sketched data set



