Tight Kernel Query Complexity of Kernel Ridge Regression and Kernel k-means Clustering

Manuel Fernández V, David P. Woodruff, Taisuke Yasuda

Overview

- Preliminaries
- Kernel ridge regression
- Kernel k-means clustering
- Query-efficient algorithm for mixtures of Gaussians

Kernel Method

- Many machine learning tasks can be expressed as a function of the inner product matrix G of the data points (rather than the design matrix)
- Implicitly apply the exact same algorithm to the data set under a feature map through the use of a kernel function
- ullet The analogue of the inner product matrix ${f G}$ is called the *kernel matrix* ${f K}$

Kernel Query Complexity

• In this work, we study *kernel query complexity*: the number of entries of the kernel matrix ${f K}$ read

Kernel Ridge Regression (KRR)

Kernel method applied to ridge regression

$$oldsymbol{lpha}_{ ext{opt}} = \underset{oldsymbol{lpha} \in \mathbb{R}^n}{\operatorname{argmin}} \| \mathbf{K} oldsymbol{lpha} - \mathbf{z} \|_2^2 + \lambda oldsymbol{lpha}^{\top} \mathbf{K} oldsymbol{lpha}$$

$$= (\mathbf{K} + \lambda \mathbf{I}_n)^{-1} \mathbf{z}$$

Approximation guarantee

$$\|\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}_{\mathrm{opt}}\|_{2} \le \varepsilon \|\boldsymbol{\alpha}_{\mathrm{opt}}\|_{2}$$

Query-Efficient Algorithms

- State of the art approximation algorithms have sublinear and data-dependent runtime and query complexity (Musco and Musco NeurIPS 2017, El Alaoui and Mahoney NeurIPS 2015)
- Sample $\tilde{O}(d_{\rm eff}^{\lambda}/\varepsilon)$ rows proportionally to ridge leverage scores where

$$d_{\text{eff}}^{\lambda}(\mathbf{K}) \coloneqq \text{tr}\Big(\mathbf{K}(\mathbf{K} + \lambda \mathbf{I}_n)^{-1}\Big) = \sum_{i=1}^{r} \frac{\sigma_i^2}{\sigma_i^2 + \lambda}$$

ullet Query complexity $ilde{O}(nd_{
m eff}^{\lambda}/arepsilon)$

Theorem (informal)

Any randomized algorithm computing a $(1+\varepsilon)$ -approximate KRR solution with probability at least 2/3 makes at least $\Omega(nd_{\rm eff}^{\lambda}/\varepsilon)$ kernel queries.

- Effective against randomized and adaptive (data-dependent) algorithms
- Tight up to logarithmic factors

Proof (sketch)

- By Yao's minimax principle, suffices to prove for deterministic algorithms on a hard input distribution
- ullet Our hard input distribution: all ones vector for the target vector ${f z}$, regularization $\lambda=n/k$

• Data distribution μ_{KRR} for the kernel matrix:

- Inner product matrix of standard basis vectors, $2n\varepsilon/k$ copies of ${f e}_j$ for the first $k/4\varepsilon$ coordinates, and $n\varepsilon/k$ copies of the next $k/2\varepsilon$
- Half of the data points belong to "large clusters", the other half belong to "small clusters"
- In order to label a row as "large cluster" or "small cluster", any algorithm must read $\Omega(k/arepsilon)$ entries of the row
- In order to label a constant fraction of rows, need to read $\Omega(nk/arepsilon)$ entries of the kernel matrix

Lemma

Any randomized algorithm for labeling a constant fraction of rows of a kernel matrix drawn from $\mu_{
m KRR}$ must read $\Omega(nk/arepsilon)$ kernel entries.

Proven using standard techniques

Reduction

Main Idea: one can just read off the labels of all the rows from the optimal KRR solution, and one can do this for a constant fraction of the rows from an approximate KRR solution.

- Let $\mathbf{K} = \mathbf{U} \mathbf{\Sigma} \mathbf{U}^{\mathsf{T}}$ be the SVD of the kernel matrix
- The columns are the eigenvectors of ${\bf K}$ and the cluster size n_j is the corresponding eigenvalue, and these are orthogonal
- The target vector is the sum of these columns

$$\mathbf{z} = \sum_{j \in [3J/4]} \sqrt{n_j} \mathbf{U} \mathbf{e}_j$$

Optimal KRR solution

$$\alpha_{\text{opt}} = (\mathbf{K} + \lambda \mathbf{I}_n)^{-1} \mathbf{z}$$

$$= \sum_{j \in [3J/4]} \frac{1}{n_j + \lambda} (\sqrt{n_j} \mathbf{U} \mathbf{e}_j)$$

Optimal KRR solution

$$\mathbf{e}_{i}^{\top} \boldsymbol{\alpha}_{\text{opt}} = \begin{cases} (2n\varepsilon/k + n/k)^{-1} = \frac{k/n}{1+2\varepsilon} & \text{if row } i \text{ has block size } 2n\varepsilon/k \\ (n\varepsilon/k + n/k)^{-1} = \frac{k/n}{1+\varepsilon} & \text{if row } i \text{ has block size } n\varepsilon/k \end{cases}$$

Thus, the entries are separated by a multiplicative $(1\pm\Omega(arepsilon))$ factor.

Approximate KRR solution

 By averaging the approximation guarantee over the coordinates, we can still distinguish the cluster sizes for a constant fraction of the coordinates

$$\|\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}_{\mathrm{opt}}\|_{2} \le \varepsilon \|\boldsymbol{\alpha}_{\mathrm{opt}}\|_{2}$$

$$d_{\text{eff}}^{\lambda} = \sum_{j \in [3J/4]} \frac{n_j}{n_j + \lambda} = \Theta\left(\sum_{j \in [3J/4]} \frac{n\varepsilon/k}{n\varepsilon/k + n/k}\right) = \Theta(k)$$

Remarks

- Settles a variant of an open question of El Alaoui and Mahoney: is the
 effective statistical dimension a lower bound on the query complexity? (they
 consider an approximation guarantee on the statistical risk instead of the
 argmin)
- Techniques extend to any indicator kernel function, including all kernels that are a function of the inner product or Euclidean distance
- Lower bound is easily modified to an instance where the top $d_{ ext{eff}}^{\lambda}$ singular values scales as the regularization λ

Kernel *k*-means Clustering (KKMC)

- Kernel method applied to k-means clustering
- Objective: a partition of the data set into k clusters that minimizes the sum of squared distances to the nearest centroid
- ullet For a feature map $arphi: \mathcal{X}
 ightarrow \mathcal{F}$, objective function is

$$cost(\mathcal{C}) \coloneqq \sum_{j=1}^{\kappa} \sum_{\mathbf{x} \in C_j} \|\varphi(\mathbf{x}) - \boldsymbol{\mu}_j\|_{\mathcal{F}}^2$$

$$\mu_j \coloneqq \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_j} \varphi(\mathbf{x})$$

Theorem (informal)

Any randomized algorithm computing a (1+arepsilon)-approximate KKMC solution with probability at least 2/3 makes at least $\Omega(nk/arepsilon)$ kernel queries.

- Effective against randomized and adaptive (data-dependent) algorithms
- Tight up to logarithmic factors

Similar techniques, hard distribution is sums of standard basis vectors

k blocks

 $1/\varepsilon$ coordinates

Kernel *k*-means Clustering of Mixtures of Gaussians

- For input distributions encountered in practice, previous lower bound may be pessimistic
- We show that for a mixture of k isotropic Gaussians, we can solve KKMC in only $\tilde{O}(n/\varepsilon)$ kernel queries

Contribution 3: Query-Efficient Algorithm for Mixtures of Gaussians

Theorem (informal)

Given a mixture of k Gaussians with mean separation $\tilde{O}(\sigma)$ there exists a randomized algorithm which returns a $(1+\varepsilon)$ - approximate k-means clustering solution reading $\tilde{O}(n/\varepsilon)$ kernel queries with probability at least 2/3.

Contribution 3: Query-Efficient Algorithm for Mixtures of Gaussians

Proof (sketch)

- Learn the means of the Gaussians in $\operatorname{poly}(k,1/arepsilon,d)$ samples (Regev and Vijayaraghavan, FOCS 2017)
- ullet Use the learned means to identify the true means of $O(\log n/arepsilon)$ Gaussians
- Subtract off Gaussians from the same mean from each other to obtain zero-mean Gaussians
- ullet Use the zero-mean Gaussians to sketch the data set in $O(n\log n/arepsilon)$ samples
- Cluster the sketched data set