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» Wald’s abstraction: a loss function

£:YXA >R, U{+0}=R

Label
space

» a — £(y.a) is an outcome contingent utility

» Learning goal: expected risk minimisation

min
fex

= x.y)~p C (75 /1X))

» In practice: empirical risk minimisation
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fex
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» Trade off low deviation against higher average

» Let S = {1,2,3} be the sensitive feature space I 60

» Forf € # let Re: 5 = R bearv. (takingS asthe 40
sample space, with a uniform base measure)

Ri: 52 5 Exy 1Y, (X)) |S = 5]
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» Standard ERM: min [E(Rf) Fé
=

» Fairness Augmented ERM: min [E(Rf) + @(Rf) = min %(Rf)

fer fer
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» Instead can start with axioms for &% Paper lists and justifies them

» Then show that such fairness risk measures are “regular measures of risk”

» (In fact they are “coherent measures of risk’)

» Such measures can always be written as
AR) = [(R) + D(R)

Fairness Deviation
risk measure measure

» Here ) is a “regular measure of deviation”
(i.e. convex, positively homogeneous, zero only when R is constant, and lower semicontinuous)
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EXAMPLE RISK MEASURE AND CORRESPONDING DEVIATION MEASURE
RodZ) =CVaR(Z) D (Z) = CVaR,(Z — E(2))
» CVaR is the "Conditional Value at Risk”.

» When Z is continuous random variable:

CVaR,(2) = E(Z|Z 2 q,(2))

» where q,(Z) is the ath quantile of Z

» Have CvaRy(Z) = E(Z) and CVaR,(Z) = max(Z)

» Fairness objective becomes (see paper, eq (26)):

|
min {P"‘ ‘ ‘[L(f)—ﬂ]+}'

fe#F peR |l —«a
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» Consistent with the principle that fundamental moral unit is the individual person
» Avoids headaches with group boundaries and multiple group membership

» Fairness risk measures automatically extend to this case (trivially)
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CONCLUSION
min %(Rf) 8D 5 By (Y, (X)) S = 5]
=4

» New and general approach to fairness in ML problems

» Fairness only depends upon losses, not predictions

» Fairness risk measures are symmetric coherent measures of risk

» Close connection to measures of inequality (see appendix)

» Computationally tractable; related to SVM! (see paper / poster for experiments)



Humanising Machine Intelligence

Machine Learning Postdoc position available

ety

hmi.anu.edu.au



http://hmi.anu.edu.au

