FAIRNESS RISK MEASURES

FAIRNESS RISK MEASURES

Aditya Menon

Robert C. Williamson

LOSS FUNCTIONS – OUTCOME CONTINGENT UTILITIES

LOSS FUNCTIONS – OUTCOME CONTINGENT UTILITIES

Wald's abstraction: a loss function

$$\mathcal{C}: Y \times A \to \mathbb{R}_+ \cup \{+\infty\} = \overline{\mathbb{R}}$$

Label Action

space space

LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES

Wald's abstraction: a loss function

$$\mathcal{C}: Y \times A \to \mathbb{R}_+ \cup \{+\infty\} =: \overline{\mathbb{R}}$$

Label Action

space space

 $ightharpoonup a \mapsto \ell(y,a)$ is an outcome contingent utility

LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES

Wald's abstraction: a loss function

$$\mathcal{C}: Y \times A \to \mathbb{R}_+ \cup \{+\infty\} =: \overline{\mathbb{R}}$$

Label Action

space space

- $a \mapsto \ell(y, a)$ is an outcome contingent utility
- Learning goal: expected risk minimisation

$$\min_{f \in \mathscr{F}} \mathbb{E}_{(X,Y) \sim P} \mathcal{L}(Y,f(X))$$

LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES

Wald's abstraction: a loss function

$$\ell: Y \times A \to \mathbb{R}_+ \cup \{+\infty\} = \mathbb{R}$$

Label Action

space space

- $a \mapsto \ell(y, a)$ is an outcome contingent utility
- Learning goal: expected risk minimisation

$$\min_{f \in \mathscr{F}} \mathbb{E}_{(X,Y)\sim P} \mathscr{L}(Y,f(X))$$

In practice: empirical risk minimisation

$$\min_{f \in \mathscr{F}} \mathbb{E}_{(X,Y) \sim P^m} \mathcal{E}(Y,f(X))$$

$$= \min_{f \in \mathscr{F}} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, f(x_i))$$

MINIMISING AGGREGATED EMPIRICAL RISK

MINIMISING AGGREGATED EMPIRICAL RISK

MINIMISING AGGREGATED EMPIRICAL RISK

Standard problem: minimise average risk

- Standard problem: minimise average risk
- ▶ Equity problem: also take account of variation

- > Standard problem: minimise average risk
- ▶ Equity problem: also take account of variation
- Fairness problem: mixture of both

- Trade off low deviation against higher average
- Let $S = \{1,2,3\}$ be the sensitive feature space

- Trade off low deviation against higher average
- Let $S = \{1,2,3\}$ be the sensitive feature space
- ▶ For $f \in \mathcal{F}$ let $R_f : S \to \mathbb{R}$ be a r.v. (taking S as the sample space, with a uniform base measure)

$$R_f: S \ni s \mapsto \mathbb{E}_{(X,Y)}[\mathcal{E}(Y,f(X))|S = s]$$

- Trade off low deviation against higher average
- Let $S = \{1,2,3\}$ be the sensitive feature space
- ▶ For $f \in \mathcal{F}$ let $R_f : S \to \mathbb{R}$ be a r.v. (taking S as the sample space, with a uniform base measure)

$$R_f: S \ni s \mapsto \mathbb{E}_{(X,Y)}[\mathscr{L}(Y,f(X))|S = s]$$

Standard ERM:

$$\min_{f \in \mathscr{F}} \mathbb{E}(R_f)$$

- Trade off low deviation against higher average
- Let $S = \{1,2,3\}$ be the sensitive feature space
- For $f \in \mathcal{F}$ let $R_f \colon S \to \mathbb{R}$ be a r.v. (taking S as the sample space, with a uniform base measure)

$$R_f: S \ni s \mapsto \mathbb{E}_{(X,Y)}[\mathscr{L}(Y,f(X))|S = s]$$

Standard ERM:

$$\min_{f \in \mathscr{F}} \mathbb{E}(R_f)$$

Fairness Augmented ERM:

$$\min_{f \in \mathcal{F}} \mathbb{E}(\mathsf{R}_f) + \mathcal{D}(\mathsf{R}_f) = \min_{f \in \mathcal{F}} \mathcal{R}(\mathsf{R}_f)$$

lacksquare Instead can start with axioms for ${\mathscr R}$

Paper lists and justifies them

lacksquare Instead can start with axioms for ${\mathscr R}$

Paper lists and justifies them

- ▶ Then show that such fairness risk measures are "regular measures of risk"
 - (In fact they are "coherent measures of risk")

Instead can start with axioms for ${\mathcal R}$

- Paper lists and justifies them
- ▶ Then show that such fairness risk measures are "regular measures of risk"
 - (In fact they are "coherent measures of risk")
- Such measures can always be written as

$$\mathcal{R}(R) = \mathbb{E}(R) + \mathcal{D}(R)$$
Fairness
risk measure

Deviation
measure

Instead can start with axioms for ${\mathcal R}$

- Paper lists and justifies them
- Then show that such fairness risk measures are "regular measures of risk"
 - (In fact they are "coherent measures of risk")
- Such measures can always be written as

$$\mathcal{R}(R) = \mathbb{E}(R) + \mathcal{D}(R)$$
Fairness
risk measure

Deviation
measure

 \blacktriangleright Here \mathscr{D} is a "regular measure of deviation" (i.e. convex, positively homogeneous, zero only when R is constant, and lower semicontinuous)

$$\mathcal{R}_{Q,\alpha}(Z) = \text{CVaR}_{\alpha}(Z)$$
 $\mathcal{D}_{Q,\alpha}(Z) = \text{CVaR}_{\alpha}(Z - \mathbb{E}(Z))$

$$\mathscr{R}_{Q,\alpha}(Z) = \text{CVaR}_{\alpha}(Z)$$
 $\mathscr{D}_{Q,\alpha}(Z) = \text{CVaR}_{\alpha}(Z - \mathbb{E}(Z))$

- CVaR is the "Conditional Value at Risk".
- When Z is continuous random variable:

$$CVaR_{\alpha}(Z) = \mathbb{E}(Z \mid Z \ge q_{\alpha}(Z))$$

• where $q_{\alpha}(Z)$ is the α th quantile of Z

$$\mathscr{R}_{Q,\alpha}(Z) = \text{CVaR}_{\alpha}(Z)$$
 $\mathscr{D}_{Q,\alpha}(Z) = \text{CVaR}_{\alpha}(Z - \mathbb{E}(Z))$

- CVaR is the "Conditional Value at Risk".
- When Z is continuous random variable:

$$CVaR_{\alpha}(Z) = \mathbb{E}(Z \mid Z \ge q_{\alpha}(Z))$$

- where $q_{\alpha}(Z)$ is the α th quantile of Z
- Have $CVaR_0(Z) = \mathbb{E}(Z)$ and $CVaR_1(Z) = max(Z)$

$$\mathscr{R}_{Q,\alpha}(Z) = \text{CVaR}_{\alpha}(Z)$$
 $\mathscr{D}_{Q,\alpha}(Z) = \text{CVaR}_{\alpha}(Z - \mathbb{E}(Z))$

- CVaR is the "Conditional Value at Risk".
- When Z is continuous random variable:

$$CVaR_{\alpha}(Z) = \mathbb{E}(Z \mid Z \ge q_{\alpha}(Z))$$

- where $q_{\alpha}(Z)$ is the α th quantile of Z
- Have $CVaR_0(Z) = \mathbb{E}(Z)$ and $CVaR_1(Z) = max(Z)$
- Fairness objective becomes (see paper, eq (26)):

$$\min_{f \in \mathcal{F}, \rho \in \mathbb{R}} \left\{ \rho + \frac{1}{1 - \alpha} \cdot \mathbb{E}[L(f) - \rho]_{+} \right\}.$$

Consistent with the principle that fundamental moral unit is the individual person

- Consistent with the principle that fundamental moral unit is the individual person
- Avoids headaches with group boundaries and multiple group membership

- Consistent with the principle that fundamental moral unit is the individual person
- Avoids headaches with group boundaries and multiple group membership
- ▶ Fairness risk measures automatically extend to this case (trivially)

$$\min_{f \in \mathcal{F}} \mathcal{R}(R_f) \qquad R_f : S \ni s \mapsto \mathbb{E}_{(X,Y)} [\ell(Y,f(X)) | S = s]$$

New and general approach to fairness in ML problems

$$\min_{f \in \mathcal{F}} \mathcal{R}(R_f) \quad R_f : S \ni s \mapsto \mathbb{E}_{(X,Y)} [\ell(Y,f(X)) | S = s]$$

- New and general approach to fairness in ML problems
- Fairness only depends upon losses, not predictions

$$\min_{f \in \mathscr{F}} \mathscr{R}(R_f) \qquad R_f \colon S \ni s \mapsto \mathbb{E}_{(X,Y)} [\mathscr{L}(Y,f(X)) | S = s]$$

- New and general approach to fairness in ML problems
- Fairness only depends upon losses, not predictions
- Fairness risk measures are symmetric coherent measures of risk

$$\min_{f \in \mathscr{F}} \mathscr{R}(\mathsf{R}_f) \quad \mathsf{R}_f \colon S \ni s \mapsto \mathbb{E}_{(\mathsf{X},\mathsf{Y})} [\mathscr{L}(\mathsf{Y},f(\mathsf{X})) | \mathsf{S} = s]$$

- New and general approach to fairness in ML problems
- Fairness only depends upon losses, not predictions
- Fairness risk measures are symmetric coherent measures of risk
- Close connection to measures of inequality (see appendix)

$$\min_{f \in \mathscr{F}} \mathscr{R}(\mathsf{R}_f) \quad \mathsf{R}_f \colon S \ni s \mapsto \mathbb{E}_{(\mathsf{X},\mathsf{Y})} [\mathscr{L}(\mathsf{Y},f(\mathsf{X})) | \mathsf{S} = s]$$

- New and general approach to fairness in ML problems
- Fairness only depends upon losses, not predictions
- ▶ Fairness risk measures are symmetric coherent measures of risk
- Close connection to measures of inequality (see appendix)
- Computationally tractable; related to SVM! (see paper / poster for experiments)

Humanising Machine Intelligence

Machine Learning Postdoc position available

hmi.anu.edu.au

