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Typical DP assumption: Reality:

One user = one example Users contribute many times
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High cap = excessive noise Low cap = biased data

We investigate this bias-variance trade-off using tools from learning theory



Setting

® Distribution P over users

Infinite collection
of users

® Fach userhasa unique distribution over examples

® |.i.d.data: first sample a user from P, then sample the user’s distribution




Learning

® (Cap each userata o fraction of the dataset

® Run astandard differentially private ERM algorithm
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Result
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The Cost of Privacy




The Cost of Privacy

L{priv) < inf L{h) +O (\/V&iéH)) + 0 (\/T§n>

For privacy noise
to vanish, Tp— 0

0 (K21(To)>




The Cost of Privacy

But then bias grows For privacy noise
Asn—oo ... without bound to Vanish, T0— 0
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The Cost of Privacy

But then bias grows For privacy noise
Asn—oo ... without bound to Vanish, T0— 0

Elltpriv) = o, A1) + O (\/vaiﬁm) e <\/Toln> "o (K;(To))

Privacy incurs a fixed cost: we cannot recover optimal error even when n — oo




