Bounding User Contributions: A Bias-Variance Trade-off in Differential Privacy

Kareem Amin, Alex Kulesza, Andrés Muñoz Medina, Sergei Vassilvitskii **Google Research NY**

Typical DP assumption:

One user = one example

Reality:

Users contribute many times

High cap = excessive noise

Low cap = biased data

We investigate this bias-variance trade-off using tools from learning theory

Setting

Infinite collection of users

- Distribution P over users
- Each user has a unique distribution over examples
- I.i.d. data: first sample a user from P, then sample the user's distribution

Learning

- Cap each user at a \(\tau_0\) fraction of the dataset
- Run a standard differentially private ERM algorithm

$$\mathcal{L}(h_{\text{priv}}) \le \inf_{h \in H} \mathcal{L}(h) +$$

Bias due to capping

Privacy noise variance

$$\mathcal{L}(h_{\mathrm{priv}}) \leq \inf_{h \in H} \mathcal{L}(h) + O\left(\sqrt{\frac{\mathrm{Var}(H)}{ au_0}}\right) + \begin{array}{c} ext{Finite} \\ ext{sample} \\ ext{variance} \end{array} + \begin{array}{c} ext{Privacy noise} \\ ext{variance} \end{array}$$

Bias due to capping

$$\mathcal{L}(h_{\mathrm{priv}}) \leq \inf_{h \in H} \mathcal{L}(h) + O\left(\sqrt{\frac{\mathrm{Var}(H)}{ au_0}}\right) + \tilde{O}\left(\sqrt{\frac{1}{ au_0 n}}\right) +$$
Privacy noise variance

Bias due to capping

Finite sample variance

$$\mathcal{L}(h_{\text{priv}}) \le \inf_{h \in H} \mathcal{L}(h) + O\left(\sqrt{\frac{\text{Var}(H)}{\tau_0}}\right) + \tilde{O}\left(\sqrt{\frac{1}{\tau_0 n}}\right) + O\left(\frac{1}{K^2(\tau_0)}\right)$$

Bias due to capping

Finite sample variance

Privacy noise variance

As $n \rightarrow \infty$...

$$\mathcal{L}(h_{\text{priv}}) \le \inf_{h \in H} \mathcal{L}(h) + O\left(\sqrt{\frac{\text{Var}(H)}{\tau_0}}\right) + \tilde{O}\left(\sqrt{\frac{1}{\tau_0 n}}\right) + O\left(\frac{1}{K^2(\tau_0)}\right)$$

As $n \rightarrow \infty$...

to vanish,
$$\tau_0 \rightarrow 0$$

For privacy noise

$$\mathcal{L}(h_{\text{priv}}) \le \inf_{h \in H} \mathcal{L}(h) + O\left(\sqrt{\frac{\text{Var}(H)}{\tau_0}}\right) + \tilde{O}\left(\sqrt{\frac{1}{\tau_0 n}}\right) + O\left(\frac{1}{K^2(\tau_0)}\right)$$

But then bias grows without bound

For privacy noise to vanish, $\tau_0 \rightarrow 0$

As
$$n \rightarrow \infty$$
 ...

$$\mathcal{L}(h_{\text{priv}}) \le \inf_{h \in H} \mathcal{L}(h) + O\left(\sqrt{\frac{\text{Var}(H)}{\tau_0}}\right) + \tilde{O}\left(\sqrt{\frac{1}{\tau_0 n}}\right) + O\left(\frac{1}{K^2(\tau_0)}\right)$$

But then bias grows without bound

For privacy noise to vanish, $\tau_0 \rightarrow 0$

As
$$n \to \infty$$
 ...

$$\mathcal{L}(h_{\text{priv}}) \le \inf_{h \in H} \mathcal{L}(h) + O\left(\sqrt{\frac{\text{Var}(H)}{\tau_0}}\right) + \tilde{O}\left(\sqrt{\frac{1}{\tau_0 n}}\right) + O\left(\frac{1}{K^2(\tau_0)}\right)$$

Privacy incurs a fixed cost: we cannot recover optimal error even when $n \rightarrow \infty$