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Empirical Risk Minimization (ERM)

Given: A dataset D = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where each
(xi , yi ) ∈ Rd × R ∼ P.

Regularization r(·) : Rd 󰀁→ R, we use ℓ2 regularization with
r(w) = λ

2󰀂w󰀂22.
For a loss function ℓ, the (regularized) Empirical Risk:

L̂r (w ;D) =
1

n

n󰁛

i=1

ℓ(w ; xi , yi ) + r(w).

the (regularized) Population Risk:

LrP(w) = E(x ,y)∼P [ℓ(w ; x , y)] + r(w).

Goal: Find w so as to minimize the empirical or population risk.
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(󰂃, δ)- Differential Privacy (DP)

Differential Privacy (DP) [Dwork et al,. 2006]

We say that two datasets, D and D ′, are neighbors if they differ by only
one entry, denoted as D ∼ D ′.

A randomized algorithm A is (󰂃, δ)-differentially private if for all
neighboring datasets D,D ′, and for all events S in the output space of A,
we have

Pr(A(D) ∈ S) ≤ e󰂃PrA(D ′) ∈ S) + δ.
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DP-ERM

DP-ERM

Determine a sample complexity n = n(1/󰂃, 1/δ, p, 1/α) such that there is
an (󰂃, δ)-DP algorithm whose output wpriv achieves an α-error in the
expected excess empirical risk:

ErrrD(w
priv) = EL̂(wLDP;D)− min

w∈Rd
L̂(w ;D) ≤ α.

or in the expected excess empirical risk:

ErrrP(w
priv) = E[LrP(wpriv)]− min

w∈Rd
LrP(w) ≤ α.
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Motivation

Previous work on DP-ERM mainly focuses on convex loss functions.

For non-convex loss functions, [Zhang et al, 2017] and [Wang and Xu
2019] studied the problem and used, as error measurement, the ℓ2
gradient norm of a private estimator, i.e.,

󰀂∇L̂rD(w
priv)󰀂2 and EP󰀂∇ℓ(wpriv; x , y)󰀂2

Main Question: Can the excess empirical (population) risk be used
to measure the error of non-convex loss functions in the differential
privacy model?
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Result 1

Theorem 1

If the loss function is L-Lipschitz, twice differentiable and M-smooth, by
using the private version of Gradient Langevin Dynamics (DP-GLD) we
show that the excess empirical (or population) risk is upper bounded by

Õ(d log(1/δ)
log n󰂃2

).

The proof is based on some recent developments in Bayesian learning
and analysis of GLD. By using a finer analysis of the time-average
error of some SDE, we show the following

Theorem 2

For the excessed empirical risk, there is an (󰂃, δ)-DP algorithm which
satisfies

lim
T→∞

ErrrD(wT ) ≤ Õ
󰀃C0(d) log(1/δ)

nτ 󰂃τ
󰀄
,

where C0(d) is a function of d and 0 < τ < 1 is some cosntant.
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Õ(d log(1/δ)
log n󰂃2

).

The proof is based on some recent developments in Bayesian learning
and analysis of GLD. By using a finer analysis of the time-average
error of some SDE, we show the following

Theorem 2

For the excessed empirical risk, there is an (󰂃, δ)-DP algorithm which
satisfies

lim
T→∞

ErrrD(wT ) ≤ Õ
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Result 2
Are these bounds tight?

Based on the exponential mechanism, we have

Empirical Risk

For any β < 1, there is an 󰂃-differentially private algorithm whose output
wpriv induces an excess empirical risk ErrrD(w

priv) ≤ Õ( d
n󰂃) with probability

at least 1− β.

Population Risk

For Generalized Linear model and Robust Regressions (whose loss
function is ℓ(w ; x , y) = (σ(〈w , x〉)− y)2 and ℓ(w ; x , y) = Φ(〈w , x〉 − y),
respectively), under some reasonable assumptions, there is an (󰂃, δ)-DP
algorithm whose excess population risk is upper bounded by

ErrP(w
priv) ≤ O

󰀃 4

󰁴
d ln 1

δ√
n󰂃

󰀄
.
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Finding Approximate Local Minimum Privately

Finding global minimum of non-convex function is challenging!

Recent research on Deep Learning and other non-convex problems
show that local minima, but not critical points, are sufficient.

But, finding local minima is still NP-hard.

Fortunately, many non-convex functions are strict saddle. Thus, it is
sufficient to find the second order stationary point (or approximate
local minimum).

Definition

w is an α-second-order stationary point (α-SOSP), if

󰀂∇F (w)󰀂2 ≤ α and λmin(∇2F (w)) ≥ −√
ρα. (1)

Can we find some approximate local minimum which escapes
saddle points and still keeps the algorithm (󰂃, δ)-differentially
private?
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Result 3

On one hand, (Ge et al. 2015) proposed an algorithm, noisy
Stochastic Gradient Descent, to find approximate local minima.

On the other hand, in DP community, one popular method for ERM
is called DP-SGD, which adds some Gaussian noise in each iteration.

Using DP-GD, we can show

Theorem 4

If the data size n is large enough such that

n ≥ Ω̃(

󰁴
log 1

δd log 1
ξ

󰂃α2
), (2)

then with probability 1− ζ, one of the outputs is an α-SOSP of the
empirical risk L̂(·,D).
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Thank you!
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