Data Poisoning Attacks on Stochastic Bandits

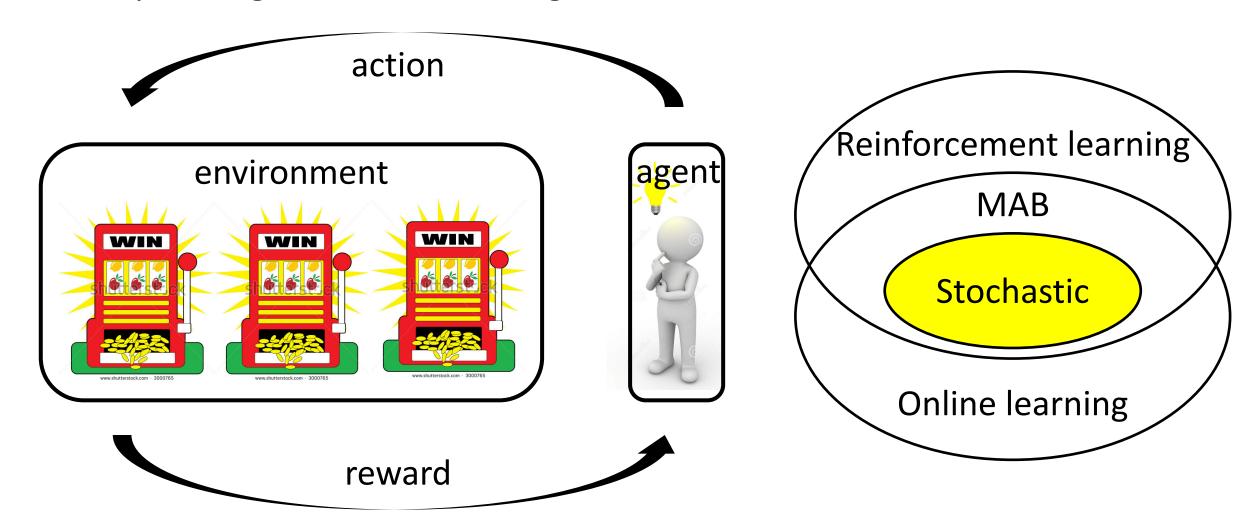
Fang Liu and Ness Shroff

Outline

- Background
 - ☐What are bandits?
 - **□** Motivations
- Data poisoning attacks on stochastic bandits
 - □Offline model
 - ☐Online model
 - ☐Simulation results
- Conclusions and discussions

What are bandits?

• Repeated game between an agent and an environment



What are bandits?

- Model
 - At each (discrete) time t, the agent plays action A_t from a set of K actions
 - The agent receives reward $Y_{A_t,t}$, drawn from unknown distribution A_t
- Performance measure

■ Regret(loss)
$$R(T) = \mathbb{E}\left[\max_{i \in [K]} \sum_{t=1}^{T} Y_{i,t} - \sum_{t=1}^{T} Y_{A_t,t}\right]$$

- Minimize regret = maximize total reward
- Regret lower bounds

$$\Omega\left(\sum_{i} \frac{\mu^* - \mu_i}{KL(\mu_a, \mu^*)} \log T\right)$$
 where μ_i is expected reward

- Popular algorithms
 - Upper Confidence Bounds (UCB), Thompson Sampling, epsilon-greedy

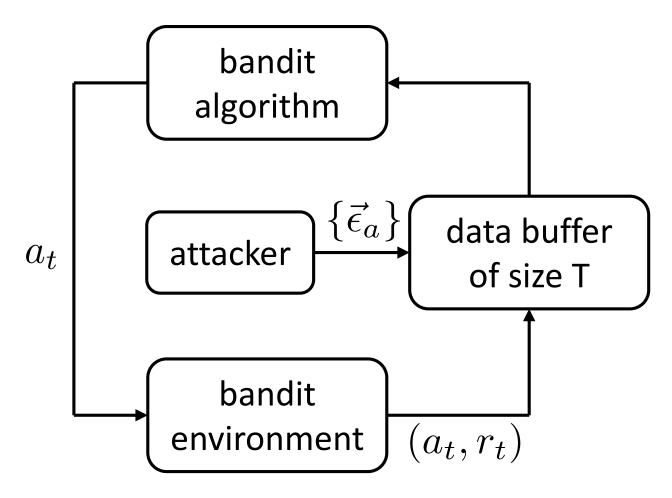
Motivations

- Adversarial learning is well studied in deep learning
- How robust are bandits?
- Many applications
 - Clinical trials
 - Recommendation systems
 - Ad placement
 - A/B test
 - A component of game-playing algorithms (MCTS), e.g. AlphaGo
 - Resource allocation
- If under stealthy attack, hard to detect (due to limited feedback)

Offline model

- Distributed system
- Algorithm updates in batches
 - Yahoo! Front Page (daily)
- Attacker manipulates the rewards r_t by adding ϵ_t
- ullet Target arm a^* , sub-optimal
- Goal: bandit plays a^* with high prob. 1δ at T+1
- Cost:

$$C(T)^2 = \sum_{t=1}^{T} \epsilon_t^2 = \sum_{a \in \mathcal{A}} ||\vec{\epsilon}_a||_2^2.$$



Offline model: epsilon greedy algorithm

$$a_t = \begin{cases} \text{draw uniformly over } \mathcal{A}, & \text{w.p. } \alpha_t \\ \arg\max_{a \in \mathcal{A}} \tilde{\mu}_a(t-1), & \text{otherwise} \end{cases}.$$

- Optimal para: $\alpha_t = \Theta(1/t)$
- Post-attack empirical mean: $\tilde{\mu}_a(t)$ Attack error tolerance: $\delta = \frac{K-1}{K} \alpha_{T+1}$
- Quadratic program with linear constraints

$$P_1: \min_{\vec{\epsilon}_a: a \in \mathcal{A}} \quad \sum_{a \in \mathcal{A}} ||\vec{\epsilon}_a||_2^2$$

$$s.t. \quad \tilde{\mu}_{a^*}(T) \ge \tilde{\mu}_a(T) + \xi, \quad \forall a \ne a^*$$

Offline model: UCB algorithm

$$a_t = \arg\max_{a \in \mathcal{A}} u_a(t) := \tilde{\mu}_a(t-1) + 3\sigma \sqrt{\frac{\log t}{N_a(t-1)}}.$$

- Attack error tolerance: $\delta = 0$
- Conditional "deterministic" algorithm
- Quadratic program with linear constraints

$$P_2: \min_{\vec{\epsilon}_a: a \in \mathcal{A}} \quad \sum_{a \in \mathcal{A}} ||\vec{\epsilon}_a||_2^2$$

$$s.t. \quad u_{a^*}(T+1) \ge u_a(T+1) + \xi, \quad \forall a \ne a^*$$

Offline model: Thompson Sampling

$$a_t = \arg\max_{a \in \mathcal{A}} \theta_a(t) \sim \mathcal{N}(\tilde{\mu}_a(t-1)/\sigma^2, \sigma^2/N_a(t-1))$$

- Bayesian algorithm: prior-posterior, prob. matching
- Quadratic program with convex constraints

$$P_{3}: \min_{\vec{\epsilon}_{a}: a \in \mathcal{A}} \sum_{a \in \mathcal{A}} ||\vec{\epsilon}_{a}||_{2}^{2}$$

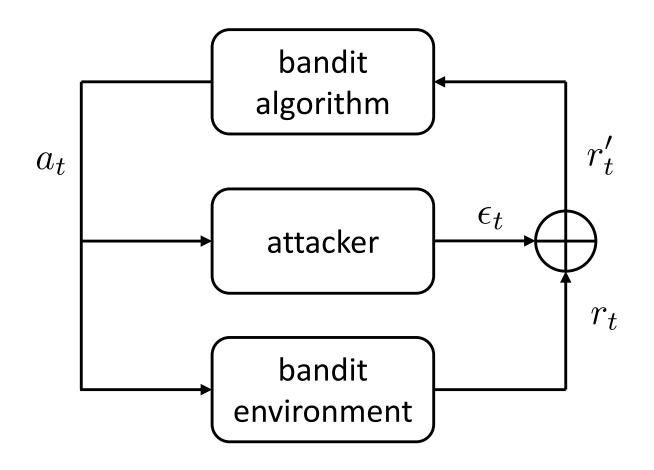
$$s.t. \sum_{a \neq a^{*}} \Phi\left(\frac{\tilde{\mu}_{a}(T) - \tilde{\mu}_{a^{*}}(T)}{\sigma^{3}\sqrt{1/m_{a} + 1/m_{a^{*}}}}\right) \leq \delta$$

$$\tilde{\mu}_{a}(T) - \tilde{\mu}_{a^{*}}(T) \leq 0, \quad \forall a \neq a^{*}$$

Online model

- Algorithm updates online
- Attacker manipulates the rewards r_t by adding ϵ_t
- ullet Target arm a^* , sub-optimal
- Goal: bandit plays a^* in $\Theta(T)$ with high prob. $1-\delta$
- Cost:

$$C(T) = \sum_{t=1}^{T} |\epsilon_t|$$



Online model: Oracle attacks

$$\epsilon_t = -I\{a_t \neq a^*\}[\mu_{a_t} - \mu_{a^*} + \xi]^+$$

- Attack against any bandit algorithm
- Not practical: unknown expectations

Proposition 1. Assume that the bandit algorithm achieves an $O(\log T)$ regret bound. Then the oracle attack with $\xi > 0$ succeeds, i.e., $\mathbb{E}[N_{a^*}(T)] = T - o(T)$. Furthermore, the expected attack cost is $O(\sum_{i \neq a^*} [\mu_i - \mu_{a^*} + \xi]^+ \log T)$.

Adaptive attacks by constant Estimation (ACE)

$$\epsilon_t = -\mathrm{I}\{a_t \neq a^*\} [\hat{\mu}_{a_t}(t) - \hat{\mu}_{a^*}(t) + \beta(N_{a_t}(t)) + \beta(N_{a^*}(t))]^+$$

- where $\beta(n) = \sqrt{\frac{2\sigma^2}{n}\log\frac{\pi^2Kn^2}{3\delta}}$ is decreasing in n
- Pre-attack empirical mean: $\hat{\mu}_a(t)$
- Attack against any bandit algorithm
- Adaptive and efficient: estimation
- How: concentration inequality + union bound

Lemma 1. For
$$\delta \in (0,1)$$
, $\mathbb{P}(E) > 1 - \delta$, where
$$E = \{ \forall a \in \mathcal{A}, \forall t : |\hat{\mu}_a(t) - \mu_a| < \beta(N_a(t)) \}.$$

Online model: ACE attacks

$$\epsilon_t = -\mathrm{I}\{a_t \neq a^*\} [\hat{\mu}_{a_t}(t) - \hat{\mu}_{a^*}(t) + \beta(N_{a_t}(t)) + \beta(N_{a^*}(t))]^+$$

Tight to oracle attack (with some additive constant)

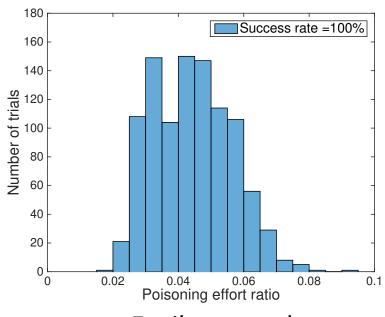
Theorem 1. Given any $\delta \in (0,0.5)$, assume that the bandit algorithm achieves an $O(\log T)$ regret bound with probability at least $1 - \delta$. With probability at least $1 - 2\delta$, the ACE attacker forces the bandit algorithm to play the target arm a^* in $N_{a^*}(T)$ times, such that $N_{a^*}(T) = T - o(T)$, using the accumulated attack cost

$$\sum_{t=1}^{T} |\epsilon_t| \le O\left(\sum_{a \ne a^*} ([\mu_a - \mu_{a^*}]^+ + 4\beta(1)) \log T\right).$$

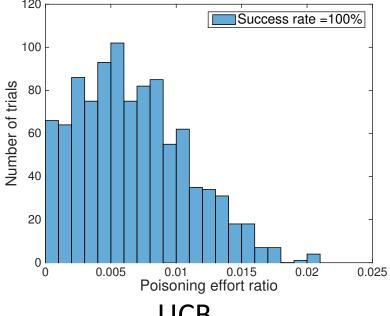
Simulation results: offline model

- Gaussian distributions with random drawn expectations
- Parameters: $K = 5, \sigma = 0.1, T = 1000, \delta = 0.05$
- Poisoning effort ratio:

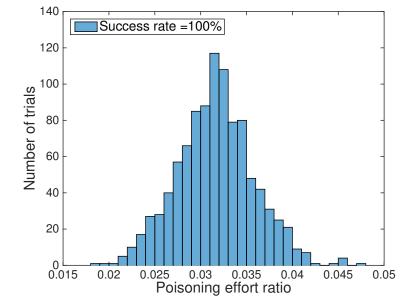
$$\frac{||\vec{\epsilon}||_2}{||\vec{r}||_2} = \sqrt{\frac{\sum_{a \in \mathcal{A}} ||\vec{\epsilon}_a||_2^2}{\sum_{a \in \mathcal{A}} ||\vec{r}_a||_2^2}}$$



Epsilon-greedy



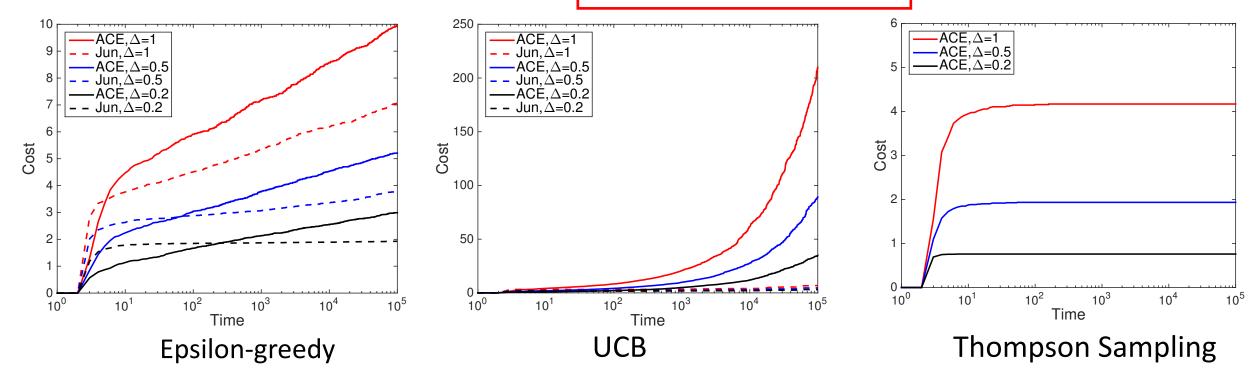
UCB



Thompson Sampling

Simulation results: online model

- Gaussian distributions with random drawn expectations
- Parameters: $K = 2, \sigma = 0.1, T = 10^5, \delta = 0.05$
- 3 cases: $\mu_1 = \Delta, \mu_2 = 0$
- Jun's attack is optimized if the bandit algo. is known (esp. deterministic).



Conclusions and discussions

- Negative results: bandits are vulnerable!
 - Algorithm-specific attacks on 3 popular bandits in offline model
 - Adaptive attacks on any bandit in online model
- Any hope to build a robust world?
- Crack the model
 - Encrypt decision
 - Replicate reward records
- Detect by distribution outlier detection

Thanks!