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* Repeated game between an agent and an environment
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* Model
" At each (discrete) time t, the agent plays action A, from a set of K actions
" The agent receives reward Ya..:, drawn from unknown distribution A,

* Performance measure
= Regret(loss) R(T)=E

T

T
max Yz’,t— E YAt,t
C[K

ielK] T t=1

" Minimize regret = maximize total reward

* Regret lower bounds )
K= H
" Problem-dependent: Q( ~ K L1, %) 108T> where riis expected reward
" Problem-independent: Q(\/ﬁ>

* Popular algorithms
= Upper Confidence Bounds (UCB), Thompson Sampling, epsilon-greedy



* Adversarial learning is well studied in deep learning

e How robust are bandits?

* Many applications
= Clinical trials
= Recommendation systems
= Ad placement
= A/B test
= A component of game-playing algorithms (MCTS), e.g. AlphaGo
= Resource allocation

* If under stealthy attack, hard to detect (due to limited feedback)



* Distributed system 4 . )
, , bandit
* Algorithm updates in batches : )
, algorithm
= Yahoo! Front Page (daily) \- J
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» Optimal para: o = ©(1/1)

* Post-attack empirical mean: fi, (%)
K -1

e Attack error tolerance: § =

K T 41
e Quadratic program with linear constraints
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 Attack error tolerance: o = (
e Conditional “deterministic” algorithm
e Quadratic program with linear constraints




* Bayesian algorithm: prior-posterior, prob. matching
* Quadratic program with convex constraints
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* Algorithm updates online

bandit
algorithm

» Attacker manipulates the
rewards 7; by adding €t

e Target arm a™, sub-optimal ,
* Goal: bandit plays ¢* in O(T) ’[ attacker ]—69

with high prob. 1 — § |
* Cost:

bandit
environmentJ

C(T) =) el



[ ec = —Har # a” }Hpa, — tar + §]+ ]

* Attack against any bandit algorithm

* Not practical: unknown expectations




[ ep = —I{ar 7 a” }fia, (t) — fta~ (t) + B(Ng, (1)) + B(Na- (t))]+]

* where ((n \/% log W2Kn2 is decreasing in n
* Pre-attack emplrlcal mean: ua(t)

* Attack against any bandit algorithm

* Adaptive and efficient: estimation

 How: concentration inequality + union bound




e = —I{ar # a"Hia, () — fia= (t) + B(Na, (1)) + B(Na (£))]T

* Tight to oracle attack (with some additive constant)




e Parameters:
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e Gaussian distributions with random drawn expectations
K =5,0=0.1,T = 1000,0 = 0.05

* Poisoning effort ratio:
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Cost
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e Gaussian distributions with random drawn expectations

e Parameters: K =2,0 =0.1,T = 10°,6 = 0.05

e 3cases: M1 =A,ux=0
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* Negative results: bandits are vulnerable!
= Algorithm-specific attacks on 3 popular bandits in offline model
= Adaptive attacks on any bandit in online model

* Any hope to build a robust world?

* Crack the model
" Encrypt decision
= Replicate reward records

* Detect by distribution outlier detection



Thanks!



