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Explain DNNSs as a linear model per data point

 DNN with piecewise linear activations like ReLLU, when applied
to a data point x, equals to a linear model g(x) = wx + b.

* The gradient term, i.e., w in g(x), has been widely studied to
explain DNN output on a given data point.

* The bias b, however, is usually overlooked.



Bias contains important information of DNNSs

 Decomposition of a DNN for every data point x:
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* The bias term, though as a scalar, results from the complicated
process involving both the weights and biases of DNN layers.




Bias is important for DNN performance

* Linear model with gradient term only may produce
wrong predictions.
* The bias term corrects it.

Dataset Train Without Bias || Train With Bias, Test All | Test Only wz | Test Only b
CIFARI10 87.0 90.9 71.5 62.2
CIFAR100 62.8 66.8 40.3 36.5
FMNIST 94.1 94.7 76.1 24.6

Our method “Bias Backpropagation (BBp)” explicitly attributes the bias
term to each input feature.



Bias Backpropagation (BBp)

. . Algorithm 1 Bias Backpropagation (BBp)
* Start from the final layer and attribute w2 (v, o, eI,
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Examples of Attribution Results on Images
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 We can use BBp to analyze
biases of different layers.

 Bias from lower layers results
IN more noise In the attribution.

* Bias from deeper layer reveals
high-level features (e.g., head
parts of the dog and the bird).
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“bias.1(2,3)” corresponds to the three variants of BBp.



Quantitative evaluation on MNIST digit flip test
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Thank youl!

* For more details, please come to our poster session

Wednesday 06:30 - 09:00 PM
Pacific Ballroom #147



