
Bias Also Matters: Bias Attribution for
Deep Neural Network Explanation

Shengjie Wang*, Tianyi Zhou*, Jeff A. Bilmes
University ofWashington, Seattle

Explain DNNs as a linear model per data point

• DNN with piecewise linear activations like ReLU, when applied
to a data point 𝑥, equals to a linear model 𝑔 𝑥 = 𝑤𝑥 + 𝑏.

• The gradient term, i.e., 𝑤 in 𝑔 𝑥 , has been widely studied to
explain DNN output on a given data point.

• The bias 𝑏, however, is usually overlooked.

D
D

Bias contains important information of DNNs
• Decomposition of a DNN for every data point x:

• The bias term, though as a scalar, results from the complicated
process involving both the weights and biases of DNN layers.

B D

Under review as a conference paper at ICLR 2019

Although the gradient of a DNN has been shown to be helpful in understanding the behavior of a DNN,
the other part of the locally linear model, i.e., the bias term, to the best of our knowledge, has not been
studied explicitly and is often overlooked. If only considering one linear model within a small region,
the bias, as a scalar, seems to contain less information than the weight vector. However, this scalar
is the result of complicated processing of bias terms over every neuron and every layer based on the
activations, the non-linearity functions, as well as the weight matrices of the network. Uncovering
the bias’s nature could potentially reveal a rich vein of attribution information complementary to
the gradient. For classification tasks, it can be the case that the gradient part of the linear model
contributes to only a negligible portion of the target label’s output probability (or even a negative logit
value), and only with a large bias term does the target label’s probability becomes larger than that of
other labels to result in the correct prediction (see Sec 5). In our empirical experiments (Table 1), using
only the bias term of the local linear models achieves 30-40% of the performance of the complete
DNN, thus indicating that the bias term indeed plays a substantial role in the mechanisms of a DNN.

In this paper, we unveil the information embedded in the bias term by developing a general bias
attribution framework that distributes the bias scalar to every dimension of the input data. We
propose a backpropagation-type algorithm called “bias backpropagation (BBp)” to send and compute
the bias attribution from the output and higher-layer nodes to lower-layer nodes and eventually to
the input features, in a layer-by-layer manner. Specifically, BBp utilizes a recursive rule to assign
the bias attribution on each node of layer ` to all the nodes on layer `� 1, while the bias attribution
on each node of layer ` � 1 is composed of the attribution sent from the layer below and the bias
term incurred in layer ` � 1. The sum of the attributions over all input dimensions produced by
BBp exactly recovers the bias term in the local linear model representation of the DNN at the given
input point. In experiments, we visualize the bias attribution results as images on a DNN trained
for image classification. We show that bias attribution can highlight essential features that are
complementary from what the gradient-alone attribution methods favor.

2 RELATED WORK

Attribution methods for deep models is an important modern research in machine learning since it is
important to complement the good empirical performance of DNNs with explanations for how, why,
and in what manner do such complicated models make their decisions. Ideally, such methods would
render DNNs to be glass boxes rather than black boxes. To this end, a number of strategies have been
investigated. Simonyan et al. (2013) visualized behaviors of convolutional networks by investigating
the gradients of the predicted class output with respect to the input features. Deconvolution (Zeiler
& Fergus, 2014) and guided backpropagation (Springenberg et al., 2014) modify gradients with addi-
tional constraints. Montavon et al. (2017) extended to higher order gradient information by calculating
the Taylor expansion, and Binder et al. (2016) study the Taylor expansion approach on DNNs with
local renormalization layers. Shrikumar et al. (2017) proposed DeepLift, which separated the positive
attribution and negative attribution, and featured customer designed attribution scores. Sundararajan
et al. (2017) declared two axioms an attribution method needs to satisfy. It further developed an
integrated gradient method that accumulates gradients on a straightline path from a base input to a
real data point and uses the aggregated gradients to measure the importance of input features. Class
Activation Mapping (CAM) (Zhou et al., 2016) localizes the attribution based on the activation of con-
volution filters, and can only be applied to a fully convolutional network. Grad-CAM (Selvaraju et al.,
2017) relaxes the all-convolution constraints of CAM by incorporating the gradient information from
the non-convolutional layers. All the work mentioned above utilizes information encoded in the gradi-
ents in some form or another, but none of them explicitly investigates the importance of the bias terms,
which is the focus of this paper. Some of them, e.g. Shrikumar et al. (2017) and Sundararajan et al.
(2017), consider the overall activation of neurons in their attribution methods, so the bias terms are
implicitly taken into account, but are not independently studied. Moreover, some of the previous work
(e.g. CAM) focus on the attribution for specific network architectures such as convolutional networks,
while our approach generally applies to any piece-wise linear DNN, convolutional or otherwise.

3 BACKGROUND AND MOTIVATION

We can write the output f(x) of any feed-forward deep neural network in the following form:
f(x) = Wm m�1(Wm�1 m�2(. . . 1(W1x+ b1) . . .) + bm�1) + bm. (1)

Where Wi and bi are the weight matrix and bias term for layer i, i is the corresponding activation
function, x 2 X is an input data point of din dimensions, f(x) is the network’s output prediction

2

Bias is important for DNN performance

Bias Attribution for Deep Neural Networks.

Table 1: Compare the performance (in test accuracy %) of models with/without the bias terms. The “only wx” and “only b”columns use
the same model as the “train with bias” column.

Dataset Train Without Bias Train With Bias, Test All Test Only wx Test Only b
CIFAR10 87.0 90.9 71.5 62.2
CIFAR100 62.8 66.8 40.3 36.5
FMNIST 94.1 94.7 76.1 24.6

image. Bias1 correspond to the first proposed option of
calculating the bias attribution score (Eq. (15)-(17)), bias2
(Eq. (18)) corresponds to the second proposed option and
bias3(Eq. (19)-(20)) corresponds to the third. For all options
of calculating the bias attribution score, the temperature pa-
rameter T is set to 1. We can observe that the bias attribution
can highlight meaningful features in the input data, and in
many cases, capture the information that is complementary
to the information provided by the gradient. For example,
for the “Brambling” image from ImageNet, BBp shows
stronger attribution on the bird’s head and wings compared
to the gradient method. For the “Fire- guard” image of Ima-
geNet, BBp has clear attribution to the fire, in addition to the
shape of the guard, while the gradient method only shows
the shape of the guard. Similarly, for the “folding chair” of
ImageNet, BBp shows clearer parts of the chair, while the
gradient attribution shows less relevant features such as the
background wall. Statistically, on ImageNet dataset, 59.4%,
56.3% and 55.2% of the 3 bias attribution pixels (top 10%
response) are not included in the gradient attribution, and
on STL-10 dataset, the portions are 50.52%, 48.29%, and
43.94% More visualizations can be found the appendix.

5.3 Bias Attribution for Various Layers

As we can naturally decompose the overall bias term into bi-
ases of individual layers, our BBp method has the advantage
of investigating the attributions of biases of various layers
of a given network. From Fig. 2, we compare attributions of
three options of BBp on ImageNet dataset with biases on var-
ious layers of the vgg-11 network. To exclude the biases of
certain layers, we run BBp with the corresponding biases set
to zeros. We can observe that attribution from all layers tend
to give the most complete shape of the objects. As we ex-
clude layers from the input, option 1 gives attributions more
concentrated on parts of the objects, such as the head parts of
the dog (the 2nd image) and the bird (the 3rd image), while
options 2 and 3 focus more on the contours of the objects.

5.4 MNIST Digit Flip Test

This experiment was proposed in (Shrikumar et al., 2017)
to verify that the attribution method is class sensitive. A
digit image of MNIST (LeCun et al., 1998) dataset gets
modified by a mask based on its difference of attributions
from two different classes, so that the image should have
fewer important features for the source class, and more
important features for the target class. Then we measure the
neural network’s output on the modified image to check if

bias.1.
attrib

bias.2.
attrib

bias.3.
attrib

bias.1.
attrib

bias.2.
attrib

bias.3.
attrib

bias.1.
attrib

bias.2.
attrib

bias.3.
attrib

original all layers
all except
first 2 layers

all except
first 4 layers

all except
first 6 layers

Figure 2: Bias attribution on ImageNet with biases on different
layers of the vgg-11 network. “bias.1(2,3)” corresponds to the
three attribution score options proposed in section 4.2

the prediction shifts from the source class to the target class
(the log-odds score is (f(x)[c1]� f(x)[c2])� (f(x̂)[c1]�
f(x̂)[c2]), where f is the network, x is an image, x̂ is the
modified x based on the attribution and c1, c2 correspond
to the source and target class). From Fig. 3, we see that the
bias attribution methods are class sensitive and comparable
to methods such as integrated gradient and DeepLift.

Acknowledgments This material is based upon work sup-
ported by the National Science Foundation under Grant No.
IIS-1162606, the National Institutes of Health under award
R01GM103544, and by a Google, a Microsoft, and an In-
tel research award. This research is also supported by the
CONIX Research Center, one of six centers in JUMP, a
Semiconductor Research Corporation (SRC) program spon-
sored by DARPA.

• Linear model with gradient term only may produce
wrong predictions.
• The bias term corrects it.

Our method “Bias Backpropagation (BBp)” explicitly attributes the bias
term to each input feature.

Bias Backpropagation (BBp)

• Start from the final layer and attribute
the bias in a backpropagation style.
• For every layer:
• Receive the bias attribution from

the previous layer.
• Combine the received bias

attribution with the effective bias
of this layer.
• Attribute the combined term to the

input of this layer.
• The sum of attribution on all input

features exactly recovers 𝑏𝑥.

Bias Attribution for Deep Neural Networks.

0

Blue Planes: Separating planes based on weights
Red Plane: b = 1 projection plane

No Bias With Bias

Planes projected onto b=1
form convex polyhedrons

Figure 1: A Piecewise linear weight matrix divides the input plane into regions. Without the bias term, the regions are cones,
while with the bias term, the regions are convex polyhedra.

�`�1[q] over all the nodes on layer `�1 yields the bias term
in Lemma 1, when writing f(x) at x as a linear model of
x`�1, i.e.,

d`�1X

q=1

�`�1[q] =
mX

j=`

mY

i=j

W x
i b

x
j�1 + bm. (14)

Hence, the complete attribution of f(x) on the
nodes of layer ` � 1 can be written in the same
form as the one shown in Eq. (10) for layer `, i.e.,
f(x) =

Pd`�1

q=1

⇥�Qm
i=`�1 W

x
i

�
[q] · x`�1[q] + �`�1[q]

⇤
.

Therefore, we start from the last layer, and recursively apply
Eq. (11)-(13) from the last layer to the first layer. This
process backpropagates to the lower layers the bias term
incurred in each layer and the bias attributions sent from
higher layers. Eventually, we can obtain the bias attribution
�[p] for each input dimension p. The bias attribution
algorithm is detailed in Algorithm 1.

4.2 Options to Compute Attribution Scores in ↵`[p]

In the following, we discuss three possible options to com-
pute the attribution scores in ↵`[p], where ↵`[p, q] measures
how much of the bias x`[p] should be attributed to x`�1[q].
For the first option, we design ↵`[p] so that the bias attri-
bution on each neuron serves as a compensation for the
weight or gradient term to achieve the desired output value,
and for the other two options, we design ↵`[p] based on the
contribution of the gradient term.

We have x`[p] =
Pdl�1

r:=1 W
x
`�1[p, r]x`�1[r] + bx` [p].

Suppose bx` [p] is negative, we may reason that to achieve
the target value of x`[p], the positive components of the
gradient term

Pdl�1

r:=1 W
x
`�1[p, r]x`�1[r] are larger than

desirable, so that we need to apply the additional negative
bias in order to achieve the desired output x`[p]. In other
words, the large positive components can be thought as

Algorithm 1 Bias Backpropagation (BBp)
input :x, {W`}m`=1, {b`}m`=1, { `(·)}m`=1

1 Compute {W x
` }m`=1 and {bx` }m`=1 for x by Eq. (5) ; // Get

data point specific weight/bias

2 �m bm ; // �` holds the accumulated attribution for

layer `

3 for ` m to 2 by �1 do

4 for p 1 to d` by 1 do

5 Compute ↵`[p] by Eq. (15)-(17) or Eq. (18) ;
// Compute attribution score

6 B`[p, q] ↵`[p, q] ⇥ �`[p], 8 q 2 [d`�1] ;
// Attribute to the layer input

7 end

8 for q 1 to d`�1 by 1 do

9 �`�1[q]
Qm

i=` W
x
i b

x
`�1 +

Pd`

p=1 B`[p, q] ;
// Combine with bias of layer ` � 1

10 end

11 end

12 return �1 2 Rdin

the causal factor leading to the negative bias term, so we
attribute more bias to the larger positive components.

On the other hand, suppose bx` [p] is positive, then the
negative components of the gradient term are smaller (or
larger in magnitude) than desirable, so the small negative
values cause the bias term to be positive, and therefore,
we attribute more bias to the smaller negative components.
Thus, we have

↵`[p, q] =
1e(l�1,p,q)=1 exp(s`[p, q]/T)

Pd`�1

r=1 1e(l�1,p,r)=1 exp(s`[p, r]/T)
, (15)

where s`[p, q] = � sign(bx` [p]) ·W x
`�1[p, q]x`�1[q], (16)

e(l � 1, p, q) = | sign(W x
`�1[p, q]x`�1[q])|. (17)

Examples of Attribution Results on Images

Horse

Airplane

Airplane

Bird

Monkey

Dog

Horse

Piggy
Bank

Teddy
Bear

Fountain
Pen

Longhorn
Beetle

Brambling

Fire-
guard

original norm.
grad.

grad.
attrib.

norm.
bias.1label

bias.1.
attrib.

norm.
bias.2

bias.2.
attrib.

norm.
bias.3

bias.3.
attrib.

norm.
integrad.

integrad.
attrib.

Folding
Chair

Bias Attribution of
various layers

bias.1.
attrib

bias.2.
attrib

bias.3.
attrib

bias.1.
attrib

bias.2.
attrib

bias.3.
attrib

bias.1.
attrib

bias.2.
attrib

bias.3.
attrib

original all layers
all except
first 2 layers

all except
first 4 layers

all except
first 6 layers

• We can use BBp to analyze
biases of different layers.
• Bias from lower layers results

in more noise in the attribution.
• Bias from deeper layer reveals

high-level features (e.g., head
parts of the dog and the bird).

“bias.1(2,3)” corresponds to the three variants of BBp.

Quantitative evaluation on MNIST digit flip test

• Mask input image pixels based on
the attribution scores.

• Check the change of the
predictions.

• Log-odds scores of target vs.
source class before and after
masking pixels.

• BBp is class-sensitive and
comparable to methods such as
integrated gradient and DeepLift.

Thank you!

• For more details, please come to our poster session

Wednesday 06:30 - 09:00 PM
Pacific Ballroom #147

