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[Koh-Steinhardt-Liang ’18]

Against known defenses, the test error can go up to 30%!

Lots of work on related problems:

[Barreno-Nelson-Joseph-Tygar’10,Nasrabadi-Tran-Nguyen’11, 
Biggio-Nelson-Laskov’12, Nguyen-Tran’13, Newell-Potharaju-
Xiang-Nita-Rotaru’14, Bhatia-Jain-Kar’15, Diakonikolas-
Kamath-Kane-L-Moitra-Stewart’16, Bhatia-Jain-Kamalaruban-
Kar’17, Balakrishnan-Du-L-Singh’17, Charikar-Steinhardt-
Valiant’17, Steinhardt-Koh-Liang’17, Koh-Liang’17, Prasad-
Suggala-Balakrishnan-Ravikumar’18, Diakonikolas-Kong-
Stewart’18, Klivans-Kothari-Meka’18,Koh-Steinhardt-
Liang’18…]



OUR	RESULTS

We present a framework for robust stochastic optimization

• Strong theoretical guarantees against strong 
adversarial models

• Outperforms benchmark defenses on state-of-the-art 
data poisoning attacks

• Works well in high dimensions

• Works with black-box access to any learner for any 
stochastic optimization task
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How should we detect outliers from the gradients?

We exploit a novel connection to robust mean estimation

Filtering [DKKLMS16, DKKLMS17]: Given a set of points 
𝑋#, … , 𝑋& drawn from a “nice” distribution, but where an       
𝜀-fraction are corrupted, there is a linear time algorithm 
which either:

1. Certifies that the true gradient of the loss function is 
close to 0

2. Removes more bad points than good points



GUARANTEES

Theorem (informal): Suppose we have a distribution 𝒟
over convex functions 𝑓, and Cov	 𝛻𝑓 𝜃 ≼ 𝜎1𝐼. Suppose 
we have 𝑓#(𝜃), 𝑓1(𝜃), … , 𝑓&(𝜃) drawn from 𝒟, where 𝜀-fraction 
of them are adversarial. Under mild assumptions on 𝒟, then 
given enough samples, SEVER outputs a 𝜃5 so that w.h.p.

𝑓̅(𝜃5)−min
;
𝑓 𝜃 < 𝑂 𝜎1𝜀 .

Can also give results for non-convex objectives

Sample complexity / runtime are polynomial but not super 
tight

For GLMs (e.g. SVM, regression), we obtain tight(er) bounds
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CONCLUSIONS

Main question: can you learn a good classifier from 
poisoned data?

Sever is a meta-algorithm for robust stochastic optimization

Based on connections to robust mean estimation

Interested? See poster #143 this evening!
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