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“airliner”

What does small mean here?

Traditionally: perturbations that have small |_p norm

Do small |_p norms capture every sense of “small”?
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Spatial Perturbations

rotation up to 30° X, y translations up to ~10%

These are not small I_p perturbations!

How robust are models to spatial perturbations?
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Attempt #2: exhaustive search

Exhaustive search is feasible, and a strong adversary!

(discretize translations and rotations, try every combination)
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Train only on “worst” transformed input (highest loss)



Spatial Defenses

Lesson from |_p robustness: use robust optimization
(= train on worst-case perturbed inputs) [ocdtelowetalTisiMady etal el

Key question: how to find worst-case translations, rotations?

Attempt thods

Attempt #2: exhaustive search

Exhaustive search is feasible, and a strong adversary!

(discretize translations and rotations, try every combination)

(we approximate via 10 random samples to quicken training)
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Spatial Defenses

With robust optimization:
(+10 sample majority vote)

CIFAR classifier accuracy: 3% adversarial to 7%X% adversarial

(compare to 93% standard accuracy) i
ImageNet classifier accuracy: 31% adversarial to versarial
(compare to 76% standard accuracy)

Still significant room for improvement!
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Come to our poster! Pacific Ballroom #142



