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Motivation: a well specified reward function remains an
Important assumption for applying RL in practice
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Motivation: a well specified reward function remains an
Important assumption for applying RL in practice
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B Often easier to provide expert data and learn a reward function using inverse RL
B |nverse RL frequently requires a lot of data to learn a generalizable reward
B This is due in part with the fundamental ambiguity of reward learning
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Goal: how can agents infer rewards from
one or a few demonstrations?
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Goal: how can agents infer rewards from
one or a few demonstrations?

B Intuition: demonstrations from previous tasks induce a prior over the space
of possible future tasks

Shared Context — Efficient adaptation
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Meta-inverse reinforcement learning: using prior
tasks information to accelerate inverse-RL
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Meta-inverse reinforcement learning: using prior
tasks information to accelerate inverse-RL

Meta-training time

Learn a prior over intent through meta-learning
over meta-training tasks: Tirain
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Our instantiation:
(background) Model-agnostic meta-learning
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Our instantiation:
(background) Model-agnostic meta-learning

K pretrained parameters

Fine-tuning 6 < 0 — aVgLirain(0) .
[test-time] K/ training data

for new task
Our method mln E Ltest OzVeﬁtram(@))
task 2

Intuition: Learning a prior over tasks, and at test time, inferring parameters under prior
(Grant et al. ICLR"18)
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Our approach: Meta reward and intention learning
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Our approach: Meta reward and intention learning

Meta-training time

Learn a prior over intent through meta-learning
over meta-training tasks: 7 ain

Our approach: embed deep MaxEnt IRL [1,2] into meta-learning
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Our approach: Meta reward and intention learning

Meta-training time

Learn a prior over intent through meta-learning
over meta-training tasks: i ain

Our approach: embed deep MaxEnt IRL [1,2] into meta-learning

min L. (0—aVeLll . (0))

0 train

task 2
1] Ziebart et al. AAAI 2008

MaxEnt objective 2] Wulfmeier et al. 2017

—

MANDRIL

Meta Reward and Intention Learning



Domain 1: SpriteWorld environment

Meta-
Training

Evaluation
time

—

MANDRIL

Meta Reward and Intention Learning



Domain 1: SpriteWorld environment

Meta-
Training

Evaluation
time

B Each task is a specific landmark navigation task

—

MANDRIL

Meta Reward and Intention Learning



Domain 1: SpriteWorld environment

Meta-
Training

Evaluation
time

B Each task is a specific landmark navigation task
B Each task exhibits the same terrain preferences

—

MANDRIL

Meta Reward and Intention Learning



Domain 1: SpriteWorld environment

Meta-
Training

Evaluation
time

B Each task is a specific landmark navigation task
B Each task exhibits the same terrain preferences
B Evaluation time varies the position of landmark and uses unseen sprites
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Domain 2: First person navigation (SUNCG)
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Domain 2: First person navigation (SUNCG)

B Tasks require both learning navigation (NAV) and picking (PICK)
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Domain 2: First person navigation (SUNCG)

B Tasks require both learning navigation (NAV) and picking (PICK)

—_—

Task illustration Agent view

B Tasks share a common theme but differ in visual layout and
specific goal
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Results: With only a limited number of demonstrations,

performance is significantly better
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Results: With only a limited number of demonstrations,
performance is significantly better
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Results: Optimizing initial weights
consistently improves performance across tasks

B Success rate is significantly improved on both test and unseen
house layouts especially on the harder PICK task

MANDRIL

Meta Reward and Intention Learning

METEHOD TEST UNSEEN HOUSES
PiIck NAV ToTAL | PICK NAV TOTAL
BEHAVIORAL CLONING 0.4 8.2 4.3 3.7 12.0 9.4
MAXENT IRL (AVG GRADIENT) | 37.3 | 83.7 60.8 38.3 | 89.7 73.3
MAXENT IRL (FROM SCRATCH) | 42.4 | 87.9 65.4 48.1 | 89.9 76.5
MANDRIL(OURS) 52.3 | 90.7 77.3 56.3 | 91.0 82.6
MANDRIL (PRE-ADAPTATION) 6.0 | 35.3 20.7 4.3 | 34.6 25.3




Reward function can be adapted with a limited
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Thanks!
Tuesday, Poster #222
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