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Policy optimization
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We consider episodic learning

Optimize a policy                        for sequential decision making 

(MDP)



Learning efficiency

● Cost of Interactions > cost of computation

○ learning efficiency = sample efficiency 

○ we should maybe spend time on planning before real interactions
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to do so we need models, but should we?



Why we should use models

● A way to summarize prior knowledge & past experiences

● Can optimize the policy indirectly without costly real-world interactions

● Can be provably more sample-efficient (Sun et al., 2019)
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Why we should NOT use models 

● Models are, by definition, inexact

● Weakness of the model can be exploited in policy optimization

● Result in biased performance of the trained policy

"The reality gap"
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ItsJerryAndHarry (Youtube)



Toward reconciling both sides 
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A new direction
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A new direction

● Main idea

We should not fully trust a model (e.g. the methods in the biased world) 
but leverage only the correct part

● How? 

1. Frame policy optimization as predictable online learning (POL)

2. Design a reduction-based algorithm for POL to reuse known algorithms

3. When translated back, this gives a meta-algorithm for policy optimization
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Online learning
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LEARNER OPPONENT

policy optimization algorithm



Online learning
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update policy

Learner makes a 

decision  

Opponent chooses a loss
try a policy

observe statistics

Learner suffers 



Online learning

● Loss sequence can be adversarially chosen by the opponent

● Common performance measure

● For convex losses, algorithms with sublinear regret are well-known

e.g. mirror descent, follow-the-regularized-leader, etc.

11



Policy optimization as online learning

● Define online losses such that sublinear regret implies policy learning

● This idea started in the context of imitation learning (Ross et al., 2011)

● We show that episodic policy optimization can be viewed similarly
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Policy optimization as online learning
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Learner makes a 

decision  

observe statistics

Check if the current policy is 

better than the previous policy

try a policy
advantage function states of the current policy 

update policy
The gradient of this loss is the actor-critic gradient (implemented in practice)



Possible algorithms

● We can try typical no-regret algorithms

e.g. mirror descent in online learning -> actor-critic update

● But it turns out they are not optimal. We can actually learn faster!

● Insight

loss functions here are not adversarial but can be inferred from the past

but these typical algorithms were designed for adversarial setups

e.g. similar policies visit similar states
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Predictability and predictive models

● We can view predictability, e.g., as the ability to predict future gradients

● Predictive model: a function that estimates gradient of future loss

● Examples
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(averaged) past gradients

replay buffer
inexact simulator function approximator 



Policy optimization is predictable online learning

● We need algorithms that consider predictability

● There are two-step algorithms for predictable setups, but ….

● We have more sophisticated algorithms for adversarial problems, but …

● That is, we need a reduction from predictable to adversarial problems
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This is PicCoLO



The idea behind PicCoLO

17

Predictable 

Adversarial

prediction error

It suffices to consider

if we wisely select     

via predictive model 



PicCoLO is a meta algorithm
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Apply a standard method (e.g. gradient descent) to this new sequence 

Prediction Step Correction Step

(PicCoLO can use control variate to reduce further the variance of           )

trick: adapt steps size based on the size of gradient error 

take larger steps when the prediction is accurate and vice versa



PicCoLO
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Same idea applies to any algorithm in the family of (adaptive) mirror 

descent and Follow-the-Regularized-Leader

PicCoLO recovers existing algorithms, e.g. extra-gradient, optimistic mirror 

descent, and provides their adaptive generalization

Correction StepPrediction Step



PicCoLO
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Theoretically we can show 

• the performance is unbiased, even when the prediction (model) is incorrect

• learning accelerates, when the prediction is relatively accurate

Correction StepPrediction Step



How to compute the prediction

● We want to set because

● We can use predictive model                             to realize this!
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Prediction Step Correction Step



How to compute the prediction

● We want to set because

● Because                           and                       , we can set                        

● We can select       by solving a fixed-point problem (FP)
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Prediction Step Correction Step

Prediction Step



How to compute the prediction

● When                         , the FP becomes an optimization problem:

● Heuristic: set                       or just do a few iterations
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this is regularized optimal control 

Prediction Step Correction Step



Experiments

● For example, with ADAM as the base algorithm
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cartpole

shows acceleration when predictions are accurate 

robust against model error  

similar properties observed for other base algorithms (e.g. natural gradient descent, TRPO)
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Experiments

● For example, with ADAM as the base algorithm
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The fixed-point formulation converges even faster



Summary

• “PicCoLOed” model-free algorithms can learn faster without bias

• The predictive model can be viewed as a unified interface for injecting prior

• As PicCoLO is designed for general predictable online learning, we expect 
applications to other problems and domains
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learning and parameterizing predictive models are of practical importance
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