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Policy optimization

We consider episodic learning , \
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Optimize a policy a; ~ m(a;|s;) for sequential decision making

ming e J(71), J(m) = (1 - y)ESO,aO,Sla---|7T [Zzo )/tC(St, at)]



Learning efficiency

Interactions > cost of computation

o learning efficiency = sample efficiency

we should maybe spend time on planning before real interacti

to do so we need models, but should we?




Why we should use models

e A way to summarize prior knowledge & past experiences

e Can optimize the policy indirectly without costly real-world interactions

e Can be provably more sample-efficient (Sun et al., 2019)




Why we should NOT use models

e Models are, by definition,
e Weakness of the model can be exploited in policy optimization
e Result in biased performance of the trained policy

"The reality gap"

ItsJerryAndHarry (Youtube)



Toward reconciling both sides
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A new direction
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*can be combined with control variate and learning to plan



A new direction

e Main idea

We should not fully trust a model (e.g. the methods in the biased world)
but leverage only the correct part

e How?
1. Frame policy optimization as predictable online learning (POL)
2. Design a reduction-based algorithm for POL to reuse known algorithms

3. When translated back, this gives a meta-algorithm for policy optimization



Online learning

LEARNER OPPONENT

/"

policy optimization algorithm



Online learning

try a policy

Opponent chooses a loss /,

Learner makes a
decision m, € 11

—~ TN

update policy

(-

observe statistics

Learner suffers ,,(x,)
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Online learning

e Loss sequence can be adversarially chosen by the opponent

e Common performance measure
R =N — mi N
egrely = anl n(7p) — Ming e anl n(7)

e [or convex losses, algorithms with sublinear regret are well-known

e.g. mirror descent, follow-the-regularized-leader, etc.

d
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Policy optimization as online learning

e Define online losses such that sublinear regret implies policy learning
e This idea started in the context of imitation learning (Ross et al., 2011)

e \We show that episodic policy optimization can be viewed similarly



Policy optimization as online learning

try a policy

ly(mr) = Esfvdﬂn Eg-n [AV,TH_1 (s,a)]

states of the current policy advantage function

Learner makes a
decision r,, € I1

—~ TN

update policy

obserye statistics

Check if the current policy is
better than the previous policy

The gradient of this loss is the actor-critic gradient (implemented in practice)

(-
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Possible algorithms

e We can try typical no-regret algorithms

e.g. mirror descent in online learning -> actor-critic update
e But it turns out they are not optimal. We can actually learn faster!

e Insight

e.g. similar policies visit similar states

ly(m) = Bs=ay X Ea-n [AVﬁn_1 (s,a)]



Predictability and predictive models

e \We can view predictability, e.g., as the ability to predict future gradients

e Predictive model: a function that estimates
D, () ~ VI, (7)

e Examples

8n

(averaged) past gradients inexact simulator function approximator
replay buffer



Policy optimization Is online learning

e \We need algorithms that consider predictability
e There are two-step algorithms for predictable setups, but ....
e \We have more sophisticated algorithms for adversarial problems, but ...

e Thatis, we need a reduction from predictable to adversarial problems

C— T



The idea behind PicColLO

m — ll() —_— My — l2() — T3 —> l3() —_— My —

It suffices to consider
[n(7) = (8n, )

if we wisely select &
via predictive model ©,(-)

ln() = z\n() + (ln - in)()
= [n() + An()

error

T, — il() —_— ] — Al()_' g —> iz() — Ty —>

Adversarial
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PicCoLO Is a meta algorithm

7’-‘(-1 — il() —_— ] — Al()—> ﬁ'g —_— ZQ() — T2 —

Apply a standard method (e.g. gradient descent) to this new sequence

A Correction Ste
V() g
My = An — NMn-18n Tinel = Ty 8n — gn)
| | | | Sy (7,)
trick: adapt steps size based on the size of gradient error v
take larger steps when the prediction is accurate and vice versa

(PicCoLO can use control variate to reduce further the variance of gx, 8x)
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PicCoLO

Correction Step

Ty = My — nn—lg}n Ansl = T — T?n(gn - gn)

Same idea applies to any algorithm in the family of (adaptive) mirror
descent and Follow-the-Regularized-Leader

PicCoLO recovers existing algorithms, e.g. extra-gradient, optimistic mirror
descent, and provides their adaptive generalization



PicCoLO

Correction Step

Ty = My — nn—lg}n Ansl = T — ?Yn(gn - gn)

Theoretically we can show

Regrety = O (\/Z,‘Yzl llgn — &nll.

» the performance is , even when the prediction (model) is incorrect
» learning , when the prediction is relatively accurate
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How to compute the prediction g,

Correction Step

Tp = Ty — 77n Rnt1 = Ttn — Nn(gn — &n)

e We wantto set ¢, ~ g, because Regrety = O (\/2le lgn — §n||,%,*

e We can use predictive model ®,,(7) ~ VI,(xr) to realize this!
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How to compute the prediction g,

Correction Step

Ty = ﬁ'n — T]n ﬁn+l =Tp — nn(gn - gn)

e We wantto set ¢, ~ g, because Regrety = O (\/22’:1 lgn — §n||,%,*)

e Because @, (7) = Vi,(7) and gn = Via(7,), we can set §n = P, (71,)

e \We can select g,, by solving a fixed-point problem (FP) Fes

T = An — N1 D(1,,) w :
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How to compute the prediction g,

Correction Step

Ty = Ry — ﬂnﬂ'n) Rne1 = T — Nn(8n — &n)

e When @,(7) = VJ,(r), the FP becomes an optimization problem:

T, = argmingeqy jn(ﬂ) + #”ﬂ' — ﬁnllz

this is regularized optimal control / -

e Heuristic: set g, = ®,(#,) or just do a few iterations
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Experiments

e [For example, with ADAM as the base algorithm

1000 cartpole
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g : L
: shows acceleration when predictions are accurate
g robust against model error
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iteration

similar properties observed for other base algorithms (e.g. natural gradient descent, TRPO) -



Experiments

e [For example, with ADAM as the base algorithm

hopper snake
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The fixed-point formulation converges even faster

Base Algorithm Previous-decision

—— LAST heuristic
REPLAY 8n = (Dn(ﬂn)
TRUEDYN

=== BIASEDDYNQ.2-FP

8n ~ (Dn(ﬂ'n)

approximate fixed-point heuristic
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Summary

* “PicCoLOed” model-free algorithms can learn faster without bias

» The predictive model can be viewed as a unified interface for injecting prior

D, () ~ VI, (7)

learning and parameterizing predictive models are of practical importance

» As PicCoLO is designed for general predictable online learning, we expect
applications to other problems and domains
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Thanks for attention

Please come to our poster # 106



